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Given a function f as N data points on an equispaced grid, find an expansion
in Fourier basis functions that

e converges fast

e is easily computable (O(N) operations).
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A set of Fourier basisfunctions restricted to a subdomain constitutes a Frame.
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Fourier Frame on [T, T]

Basis functions ¢m(x) = %e"LTmX, m=-M,....M

o Approximation g(x) = 1., akox(x)

Fitting the data on [—1,1]

Collocation at equidistant points x; = i,\',,j =-N,...,N.
Least squares problem Aj; = ¢i(x;), bj = f(x;)
Aa=b>b
A is DFT-subblock
Some oversampling N = nM required, A is a tall matrix (n ~ 2)

Fast solver for Aa = b needed
Fast algorithm exists for T = 2 (Lyon 2011)
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A closer look at A

Singular values of A

10—18 | | | | |
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e Spectrum has a plateau shape (Slepian 1978, Wilson 1987)

e Size of transition/plunge/problematic region
l—e>0>¢

grows as O(log N) for 1D problems.

e System matrix is extremely ill-conditioned
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Ill-conditioning explained
Fourier series corresponding to the right singular vectors of A:

1 —
0
0 0 0
-T -1 1 T -T -1 1 T -T -1 1 T
1-region middle region e-region

e Solving with Truncated SVD yields approximation to machine accuracy
(Adcock, Huybrechs, Martin-Vaquero 2014)
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Truncated SVD
e A= ULV’
e x=VI'Uh
Solvi hy /! -1,y
iy o x = VIS Uib1 + Vinia % iy Unigbmia +V. 5" UL b,
X1 Xmid Xe

Assumption: b, is negligible (discrete Picard condition)
X1 is easy when Xpiq is known

® by = b — bnig = b — Axmid

o x1 = ViT ULy ~ ViT Uy = A'by
All you need is one application of A and A’ (fast!)

How to find Xmiq?
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e ‘Projection operator’ | — AA’ isolates the middle singular values
(I — AAYA = U(Z — )V
Solving the

system

The numerical nullspace of (/ — AA")A contains both the 1 and e-regions.
e Solving (I — AA")Ax = (I — AA")b yields xmid
e (I — AA")A has numerical rank O(log N)
e This can be solved efficiently in O(N log® N)
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Xo = A'(b— Axg)
X = Xo + Xp
Results
Solving the
system
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(a) timings (b) convergence
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e A consists of selected rows of the 2D DFT matrix.
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2D Frames
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(a) Masked Grid (b) Singular values of A

e Partially proven: the problematic region grows as O(v/N) for N total
points.

e The algorithm complexity becomes O(N?)
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e Complexity is O(N?), as expected

e Convergence speed is seemingly conserved
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2D Fourier Frame Approximation

f(x,y) = cos(20x + 22y)

0.0 0.5
(a) Fourier®Chebyshev Extension

0.0 0.5
(b) logyq(error)
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Observation: You can add extra rows and/or columns to A while preserving

the plateau shape. Let A = [A b]. Then because of the interlacing property
of singular values

01> 01>02> ...

the spectra are similar:

sp(A):1>01> >0k >(1—€)>0k41> >0 >€>0141 >+ >0.

sp(A):1>a2> >0k >(l—€)>0kp2>-->0 >€>042> >0,
Problematic region contains a maximum of 3 extra singular values. This might
be useful for

e Some extra functions added to the frame

e Boundary conditions when solving differential equations
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Y Y. aminm
F)= > amdm(x),  F(x)= " 0m(x)
m=—M m=—M
A differential equation

Possible AA + KA=f

extensions

becomes
(DZ + D} + K*l)ca = cr

Implementation
e Boundary conditions are sampled at the boundary and added as extra
rows in the system matrix. Complexity remains O(N log N)/O(N?).

o [f the diagonal operator is not invertible, care has to be taken of the DC
coefficient
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The end

GitHub julia

Julia code available at https://github.com/daanhb/Framefuns. jl


https://github.com/daanhb/Framefuns.jl
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