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Fourier Extension

Fourier Extension principle

Constructing an exponentially convergent approximation of a
function on a given interval, by fitting a Fourier series on a
larger domain.

Example f (x) = x on [−1, 1]
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Fourier Extension

Fourier Series

fN(x) =
a0
2

+
N∑

n=1

[an cos 2πnx + bn sin 2πnx ]

−2 −1 0 1 2

−1

0

1



Fast Fourier
Extension

with Discrete
Prolate

Spheroidal
Sequences

Roel
Matthysen

Fourier
Extension

A closer look
at A

Algorithm for
general T

Conclusions

Fourier Extension

Fourier Extension
Fourier series over larger domain [−T ,T ].

g ∈ GN : g(x) =
a0
2

+
N∑

n=1

[
an cos 2π

nx

T
+ bn sin 2π

nx

T

]
gN : = arg min

g∈GN

||f − g ||L2
[−1,1]
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Fourier Extension

Redundancy

• Fourier basis restricted to interval constitutes a frame

• Least squares fitting problem has many good approximate
solutions
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Why Fourier Extensions

• Exponential convergence for smooth but non-periodic
functions1

• Good resolution power (dof per wavelength) when T is
close to 12

• Approximation from uniformly spaced data

• A fast O(N log(N)) algorithm exists3, using FFTs, for the
special case T = 2

• This talk : A fast solver for general T

1Huybrechs 2010; Adcock, Huybrechs, Martin-Vaquero 2014.
2Adcock, Huybrechs 2011.
3Lyon 2012.
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Fourier Extension

Notation

• Frame basis functions φn(x) = 1√
2T

e i
πn
T
x , n = −N, . . . ,N

• Approximation g(x) =
∑N

k=−N akφk(x)

Fitting the Fourier Extension

• Collocation at equidistant points xj = j
M , j = −M, . . . ,M.

• Least squares problem Aij = φi (xj), bj = f (xj)

Aa ≈ b

• Some oversampling M = ηN required, A is rectangular

• Goal: A fast solver for this system
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A closer look at A

Singular values of A
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• Least-squares system Aa = b is extremely ill-conditioned,
κ(A) = O(ε−1)

• Solving with Truncated SVD or MATLAB backslash still
gives approximation to machine accuracy4

4Adcock, Huybrechs, Martin-Vaquero 2014.
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A closer look at A

Singular vectors of A

• Are Periodic Discrete Prolate Spheroidal Sequences

• Corresponding singular values:
• O(N/T ) are in [1− ε, 1)
• O(N − N/T ) are in (0, ε]
• O(log N) “intermediate” values in (ε, 1− ε)

• Easily obtained as eigenvectors of tridiagonal matrix

• Optimal frequency localisation w.r.t. FFT

FFT
==⇒
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Separating the singular values
• Frequency localization of singular vectors (left & right),

energy in first N/T bins is proportional to σi

DCT
===⇒

• A = USV ∗, C =DCT-matrix

CU ≈
[

F1 ε
ε F2

]
CA ≈

[
F1 ε
ε F2

] [
S1V ∗1
S2V ∗2

]
=

[
F1S1V ∗1 + O(ε)
F1S2V ∗2 + O(ε)

]
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Separating the singular values

System CAa=Cb

• CA =

[
A1

A2

]
, Cb =

[
b1

b2

]
, where

• κ(A1) ≈ 1, full rank
• κ(A2) ≈ ε−1, rank(A2) = O(log N)

Algorithm using random matrices

1 Solve A1a1 = b1 iteratively

2 Solve A2a2 = b2 − A2a1 , with a2 ∈ null(A1)

• Solve A1q = A1r , for O(log N) random vectors r
• r − q is in null(A1)

• Construct reduced system L = A2(R − Q)
• Solve Lz = b2 − A2a1 with an SVD
• Expand z : a2 = (R − Q)z

3 a = a1 + a2
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Results
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Conclusions

• Separation algorithm on par with M. Lyon algorithm on
complexity and convergence

• Constant factor slower in practice, but more flexible
• Possible to vary T with M

• P-DPSS provide theoretical framework for the FE method
for equispaced data
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