> Roel Matthysen

Fourier Extension

A closer look at A

Algorithm fo general *T*

Conclusions

Fast Fourier Extension with Discrete Prolate Spheroidal Sequences

Roel Matthysen

June 23, 2014

Joint work with Daan Huybrechs Department of Computer Science, KU Leuven

> Roel Matthysen

Fourier Extension

A closer look at *A*

Algorithm for general *T*

Conclusions

Fourier Extension

Fourier Extension principle

Constructing an exponentially convergent approximation of a function on a given interval, by fitting a Fourier series on a larger domain.

Example f(x) = x on [-1, 1]

Roel Matthysen

Fourier Extension

- A closer look at A
- Algorithm fo general T
- Conclusions

Fourier Extension

Fourier Series

$$f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos 2\pi n x + b_n \sin 2\pi n x]$$

> Roel Matthysen

Fourier Extension

A closer look at A

Algorithm fo general *T*

Conclusions

Fourier Extension

Fourier Extension

Fourier series over larger domain [-T, T].

$$g \in G_N : g(x) = \frac{a_0}{2} + \sum_{n=1}^N \left[a_n \cos 2\pi \frac{nx}{T} + b_n \sin 2\pi \frac{nx}{T} \right]$$
$$g_N := \arg \min_{g \in G_N} ||f - g||_{L^2_{[-1,1]}}$$

> Roel Matthysen

Fourier Extension

A closer look at A

Algorithm for general *T*

Conclusions

Redundancy

- Fourier basis restricted to interval constitutes a frame
- Least squares fitting problem has many good approximate solutions

Fourier Extension

Roel Matthysen

Fourier Extension

A closer look at *A*

Algorithm for general *T*

Conclusions

Why Fourier Extensions

- Exponential convergence for smooth but non-periodic $\ensuremath{\mathsf{functions}}^1$
- Good resolution power (dof per wavelength) when ${\cal T}$ is close to 1^2
- Approximation from uniformly spaced data
- A fast O(N log(N)) algorithm exists³, using FFTs, for the special case T = 2
 - This talk : A fast solver for general T

¹Huybrechs 2010; Adcock, Huybrechs, Martin-Vaquero 2014. ²Adcock, Huybrechs 2011. ³Lyon 2012.

> Roel Matthysen

Fourier Extension

A closer look at *A*

Algorithm for general *T*

Conclusions

Notation

- Frame basis functions $\phi_n(x) = \frac{1}{\sqrt{2T}} e^{j\frac{\pi n}{T}x}, n = -N, \dots, N$
- Approximation $g(x) = \sum_{k=-N}^{N} a_k \phi_k(x)$

Fitting the Fourier Extension

- Collocation at equidistant points $x_j = \frac{j}{M}, j = -M, \dots, M$.
- Least squares problem $A_{ij} = \phi_i(x_j)$, $b_j = f(x_j)$

$$Aa \approx b$$

- Some oversampling $M = \eta N$ required, A is rectangular
- Goal: A fast solver for this system

Fourier Extension

> Roel Matthysen

Fourier Extension

A closer look at A

Algorithm for general *T*

A closer look at A

Singular values of A

- Least-squares system Aa = b is extremely ill-conditioned, $\kappa(A) = \mathcal{O}(\epsilon^{-1})$
- Solving with Truncated SVD or MATLAB backslash still gives approximation to machine accuracy⁴

⁴Adcock, Huybrechs, Martin-Vaquero 2014.

> Roel Matthysen

Fourier Extension

A closer look at A

Algorithm fo general *T*

Conclusions

Singular vectors of A

• Are Periodic Discrete Prolate Spheroidal Sequences

A closer look at A

- Corresponding singular values:
 - O(N/T) are in $[1 \epsilon, 1)$
 - O(N N/T) are in $(0, \epsilon]$
 - $O(\log N)$ "intermediate" values in $(\epsilon, 1-\epsilon)$
- Easily obtained as eigenvectors of tridiagonal matrix
- Optimal frequency localisation w.r.t. FFT

> Roel Matthysen

Fourier Extension

A closer look at A

Algorithm for general T

Conclusions

Separating the singular values

 Frequency localization of singular vectors (left & right), energy in first N/T bins is proportional to σ_i

• $A = USV^*$, C = DCT-matrix $CU \approx \begin{bmatrix} F_1 & \epsilon \\ \epsilon & F_2 \end{bmatrix}$ $CA \approx \begin{bmatrix} F_1 & \epsilon \\ \epsilon & F_2 \end{bmatrix} \begin{bmatrix} S_1V_1^* \\ S_2V_2^* \end{bmatrix} = \begin{bmatrix} F_1S_1V_1^* + O(\epsilon) \\ F_1S_2V_2^* + O(\epsilon) \end{bmatrix}$

Roel Matthysen

Fourier Extension

A closer look at *A*

Algorithm for general T

Conclusions

Separating the singular values

System CAa=Cb

•
$$CA = \begin{bmatrix} \overline{A}_1 \\ \overline{A}_2 \end{bmatrix}$$
, $Cb = \begin{bmatrix} \overline{b}_1 \\ \overline{b}_2 \end{bmatrix}$, where

• $\kappa(\overline{A}_1) \approx 1$, full rank • $\kappa(\overline{A}_2) \approx \epsilon^{-1}$, $rank(\overline{A}_2) = O(\log N)$

Algorithm using random matrices

- **1** Solve $\overline{A}_1 a_1 = \overline{b}_1$ iteratively
- 2 Solve $\overline{A}_2a_2 = \overline{b}_2 \overline{A}_2a_1$, with $a_2 \in null(\overline{A}_1)$
 - Solve $\overline{A}_1 q = \overline{A}_1 r$, for $O(\log N)$ random vectors r

•
$$r-q$$
 is in $null(A_1)$

- Construct reduced system $L = \overline{A}_2(R Q)$
- Solve $Lz = \overline{b}_2 \overline{A}_2 a_1$ with an SVD
- Expand $z : a_2 = (R Q)z$

3 $a = a_1 + a_2$

Roel Matthysen

Fourier Extension

A closer look at *A*

Algorithm for general T

Conclusions

Separating the singular values

System CAa=Cb

•
$$CA = \begin{bmatrix} \overline{A}_1 \\ \overline{A}_2 \end{bmatrix}$$
, $Cb = \begin{bmatrix} \overline{b}_1 \\ \overline{b}_2 \end{bmatrix}$, where

• $\kappa(\overline{A}_1) \approx 1$, full rank • $\kappa(\overline{A}_2) \approx \epsilon^{-1}$, $rank(\overline{A}_2) = O(\log N)$

Algorithm using random matrices

Solve A
₁a₁ = b
₁ iteratively
 Solve A
₂a₂ = b
₂ - A
₂a₁, with a₂ ∈ null(A
₁)
 Solve A
₁q = A
₁r, for O(log N) random vectors r
 r - q is in null(A
₁)
 Construct reduced system L = A
₂(R - Q)
 Solve Lz = b
₂ - A
₂a₁ with an SVD
 Expand z : a₂ = (R - Q)z

3 $a = a_1 + a_2$

Results

Fast Fourier Extension

with Discrete Prolate Spheroidal

Fourier Extension

A closer look at A

Algorithm for general *T*

Conclusions

Results

Fast Fourier Extension with Discrete Prolate Spheroidal Sequences

> Roel Matthysen

Fourier Extension

A closer loo at *A*

Algorithm for general T

Conclusions

Conclusions

Prolate Spheroidal Sequences Roel

Fast Fourier Extension

with Discrete

Matthysen

Fourier Extension

A closer look at *A*

Algorithm fo general *T*

Conclusions

- Separation algorithm on par with M. Lyon algorithm on complexity and convergence
- Constant factor slower in practice, but more flexible
 - Possible to vary T with M
- P-DPSS provide theoretical framework for the FE method for equispaced data