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Goal
Given a function f as N data points on an equispaced grid, find an expansion
in Fourier basis functions that

e converges fast
e is easily computable (O(N) operations).

Classical Fourier interpolation (FFT) relies on periodicity for fast convergence.

4

3 .

Otherwise the Gibbs phenomenon makes convergence very slow.
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Fourier Extension

A Fourier Extension is an approximation of some function on a given domain
in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate exp(x) through interpolation and Fourier extension for
increasing dof:
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(a) Fourier interpolation (b) Fourier extension
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_ Fourier Frame on [T, T]
Frensien e Basis functions ¢m(x) = %e"LTmX, m=-M,....M
e Approximation g(x) = Ez/l:,,\/, akpr(x)
Fitting the data on [—1,1]
o Collocation at equidistant points x; = i,\',,j =—-N,...,N.

o Least squares problem Aj; = ¢i(x;), bj = f(x;)
Aa=0b

A is DFT-subblock
e Some oversampling N = nM required, A is a tall matrix (n ~ 2)

Fast solver for Aa = b needed
Fast algorithm exists for T = 2 (Lyon 2011)
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Singular values of A

A closer
look at A

10—18 | | | | |
0 20 40 60 80 100 120

e Spectrum has a plateau shape (Slepian 1978, Wilson 1987)

e Size of transition/plunge/problematic region
l—e>0>¢

grows as O(log N).

e System matrix is extremely ill-conditioned
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Ill-conditioning explained
e A Frame is a set of vectors that spans a vector space, but is not
A closer necessarily linearly independent.

e Fourier basis restricted to interval constitutes a frame, a redundant basis

e Finding a representation is a very ill-conditioned problem

6 T

0 |
-T -1 0 1 T

However, ||g — f|[[-1.1. ||h — fll{=1,1 are all small.
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Fourier series corresponding to the singular vectors of A:

A closer
look at A

| | | |
T -T -1 1 T
e-region

-T -1 1 T -T -1 1
1-region middle region

e Solving with Truncated SVD yields approximation to machine accuracy
(Adcock, Huybrechs, Martin-Vaquero 2014)
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Truncated SVD
e A=UZV’
Solving the e x=VI b

system

° x= V121 Ui b1 + Vinia Z iy Uniabmia + V.5 UL b,

mid

x1 Xoid x.
Assumption: b, is negligible (discrete Picard condition)
X1 is easy when Xpiq is known

® by = b — bnig = b — Axmid

o x1 = ViT ULy ~ ViT Uy = A'by
All you need is one application of A and A’ (fast!)

How to find Xmiq?
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e 'Projection operator’ | — AA’ isolates the middle singular values

(I — AAYA = U(Z — )V
Solving the
system

The numerical nullspace of (/ — AA")A contains both the 1 and e-regions.
e Solving (I — AA")Ax = (I — AA")b yields xmid
e (I — AA")A has numerical rank O(log N)
e This can be solved efficiently in O(N log® N)
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y (I — AA)Axs = (I — AA)b
Extension Xa = A'(b— Axg)
X = Xo + Xg

A closer
look at A

Solving the ReSU|tS

system
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e A consists of selected rows of the 2D DFT matrix.

10°
2D Frames
© 10~°
—18 | |
1077 50 100
(a) Masked Grid (b) Singular values of A

e Partially proven: the problematic region grows as O(v/N) for N total
points.

e The algorithm complexity becomes O(N?)
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2D Frames

Experimental results for 2D extensions:

0
H
5 10t |- N
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10! 10° 10°
N
(a) Timings

e Complexity is O(N?), as expected

[|Aa — bl|

2D Frames

10?

e Convergence speed is seemingly conserved

10?
N
(b) Error

10°
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2D Frames

2D Fourier Frame

2D Fourier Extension

f(x,y) = exp(x +y)
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(a) Fourier®Fourier Extension (b) logyg(error)
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Chebyshev Frame
o A consists of selected rows of the 2D Chebyshev interpolation matrix.
lg — .
2D Frames : - 10
0.5 - -

TR i 18 | !
“1 —05 0 05 1 1077, 50 100

(a) Masked Grid (b) Singular values of A

e The algorithm complexity becomes O(N?)
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2D Chebyshev Frame

Combining Fourier and Chebyshev basis functions

f(x,y) = cos(20x + 22y)

(a) Fourier®Chebyshev Extension
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srhysen At the same complexity, the coefficients can be made to have a certain decay
rate.
T T T
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(a) Regular solution (b) Smoothed solution
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(c) Regular coefficients (d) Smoothed coefficients
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Extension convergence
When smoothed, the extension converges to some fixed function.

e Example: when smoothing the second derivative (O(n?) decay rate),

the extension converges to a third degree polynomial that interpolates
f(a), f(b), f'(a), f'(b).

Smoothed
Extensions

Figure: Smoothed extension for increasing dof.
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2D smoothing

2D functions can also easily be smoothed, example f(x,y) = €~
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(a) Fourier Extension
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(c) logyq(error)

Smoothed Extensions
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e Derivative is diagonal operator
« Y. aminm
f(x) = m®Pm(x), f'(x) = m m
(x) ;Ma Pm(x) (x) _E,M 7 ¢m(x)

A differential equation

2
il AA+Kk°A=f
Equations

becomes
(D} + D] + K*l)ea = cf

Boundary conditions

e Number of additional equations grows as the dimension of the boundary.

e When implemented correctly, this does not destroy the plateau/plunge
region singular value distribution.

e Solving a differential equation has the same complexity as a FE.
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Helmholtz Equation

Differential Equations

AA + 3524 = 6—200((X—OA3)2+(y+0.3)2)7 A(x,y) = 0,
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GitHub julia

Julia code available at https://github.com/daanhb/Framefuns. jl

Differential
Equations


https://github.com/daanhb/Framefuns.jl
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