Roel Matthysen

Fourier Extensior

A closer look at A

Solving the system

2D Frames

Smoothed Extensions

Differential Equations

Fourier Extensions: Algorithms and Applications

Roel Matthysen

April 14, 2016

Joint work with Daan Huybrechs

Department of Computer Science, KU Leuven

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frames

Smoothed Extensions

Differential Equations

Goal

Given a function f as N data points on an equispaced grid, find an expansion in Fourier basis functions that

- converges fast
- is easily computable (O(N) operations).

Classical Fourier interpolation (FFT) relies on periodicity for fast convergence.

Otherwise the Gibbs phenomenon makes convergence very slow.

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frames

Smoothed Extensions

Differential Equations

Goal

Given a function f as N data points on an equispaced grid, find an expansion in Fourier basis functions that

- converges fast
- is easily computable (O(N) operations).

Classical Fourier interpolation (FFT) relies on periodicity for fast convergence.

Otherwise the Gibbs phenomenon makes convergence very slow.

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frame

Smoothed Extension

Differentia Equations

Fourier Extension

Roel Matthysen

Fourier Extension

A closer look at *A*

Solving the system

2D Frames

Smoothed Extension

Differentia Equations

Fourier Extension

Roel Matthysen

Fourier Extension

A closer look at *A*

Solving the system

2D Frame

Smoothed Extension

Differentia Equations

Fourier Extension

Roel Matthysen

Fourier Extension

A closer look at *A*

Solving the system

2D Frame

Smoothed Extension

Differentia Equations

Fourier Extension

Roel Matthysen

Fourier Extension

A closer look at *A*

Solving the system

2D Frame

Smoothed Extension

Differentia Equations

Fourier Extension

Fourier Extension

Fourier Frame on [-T, T]

- Basis functions $\phi_m(x) = \frac{1}{\sqrt{2T}} e^{i \frac{\pi m}{T}x}, m = -M, \dots, M$
- Approximation $g(x) = \sum_{k=-M}^{M} a_k \phi_k(x)$

Fitting the data on $\left[-1,1 ight]$

- Collocation at equidistant points $x_j = \frac{j}{N}, j = -N, \dots, N$.
- Least squares problem $A_{ij} = \phi_i(x_j), \ b_j = f(x_j)$

$$Aa = b$$

- A is DFT-subblock
- Some oversampling $N=\eta M$ required, A is a tall matrix $(\eta\sim 2)$
- Fast solver for Aa = b needed
- Fast algorithm exists for T = 2 (Lyon 2011)

Fourier Extensions: Algorithms and Applications

Roel Matthysen

Fourier Extension

A closer look at *A*

Solving th system

2D Frames

Smoothed Extensions

Differential Equations

A closer look at A

Singular values of A

- Spectrum has a plateau shape (Slepian 1978, Wilson 1987)
- Size of transition/plunge/problematic region

$$1 - \epsilon > \theta_i > \epsilon$$

grows as $O(\log N)$.

• System matrix is extremely ill-conditioned

Fourier Extensions: Algorithms and Applications

Roel Matthysen

Fourier Extension

A closer look at A

Solving th system

2D Frames

Smoothed Extensions

Differentia Equations

Roel Matthysen

Fourier Extension

A closer look at A

Solving th system

2D Frames

Smoothed Extensions

Differential Equations

Ill-conditioning explained

- A Frame is a set of vectors that spans a vector space, but is not necessarily linearly independent.
- Fourier basis restricted to interval constitutes a frame, a redundant basis
- Finding a representation is a very ill-conditioned problem

However, $||g - f||_{[-1,1]}$, $||h - f||_{[-1,1]}$, $||l - f||_{[-1,1]}$ are all small.

A closer look at A

Roel Matthysen

Fourier Extensior

A closer look at A

Solving th system

2D Frames

Smoothed Extensions

Differentia Equations

Ill-conditioning explained

Fourier series corresponding to the singular vectors of A:

• Solving with Truncated SVD yields approximation to machine accuracy (Adcock, Huybrechs, Martin-Vaquero 2014)

A closer look at A

Roel Matthysen

Fourier Extensior

A closer look at A

Solving the system

2D Frame

Smoothed Extensions

Differential Equations

Solving the least-squares system

Truncated SVD

Assumption: b_{ϵ} is negligible (discrete Picard condition)

x_1 is easy when x_{mid} is known

•
$$b_1 = b - b_{mid} = b - A_{Xmid}$$

•
$$x_1 = V_1 \Sigma_1^{-1} U_1' b_1 \approx V_1 \Sigma_1 U_1' b_1 = A' b_1$$

All you need is one application of A and A' (fast!) How to find x_{mid} ?

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frames

Smoothed Extensions

Differential Equations

Isolating the problematic singular values

• 'Projection operator' I - AA' isolates the middle singular values

$$(I - AA')A = U(\Sigma - \Sigma^3)V'$$

The numerical nullspace of (I - AA')A contains both the 1 and ϵ -regions.

- Solving (I AA')Ax = (I AA')b yields x_{mid}
- (I AA')A has numerical rank $O(\log N)$
- This can be solved efficiently in $O(N \log^2 N)$

Implementation

Algorithm

$$(I - AA')Ax_{\beta} = (I - AA')b$$

 $x_{\alpha} = A'(b - Ax_{\beta})$
 $x = x_{\alpha} + x_{\beta}$

Results

Solving the system 2D Frames

Fourier Extensions: Algorithms

and Applications

Roel Matthysen

Smoothed Extension

Differentia Equations

2D Frames

Fourier Frame

• A consists of selected rows of the 2D DFT matrix.

- Partially proven: the problematic region grows as $O(\sqrt{N})$ for N total points.
- The algorithm complexity becomes $O(N^2)$

Fourier Extensions: Algorithms and Applications

Roel Matthysen

Fourier Extension

A closer look at *A*

Solving the system

2D Frames

Smoothed Extensions

Differential Equations

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frames

Smoothed Extensions

Differentia Equations

Experimental results for 2D extensions:

- Complexity is $O(N^2)$, as expected
- · Convergence speed is seemingly conserved

2D Frames

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frames

Smoothed Extension

Differentia Equations

2D Fourier Extension

$$f(x,y) = \exp(x+y)$$

2D Fourier Frame

2D Frames

Chebyshev Frame

• A consists of selected rows of the 2D Chebyshev interpolation matrix.

• The algorithm complexity becomes $O(N^2)$

Fourier Extensions: Algorithms and Applications

Roel Matthysen

Fourier Extension

A closer look at A

Solving tl system

2D Frames

Smoothed Extensions

Differentia Equations

Roel Matthysen

Fourier Extensior

A closer look at A

Solving th system

2D Frames

Smoothed Extension

Differentia Equations

2D Chebyshev Frame

Combining Fourier and Chebyshev basis functions

$$f(x,y) = \cos(20x + 22y)$$

Roel Matthysen

Fourier Extensio

A closer look at A

Solving th system

2D Frame

Smoothed Extensions

Differentia Equations

Manipulating the nullspace

At the same complexity, the coefficients can be made to have a certain decay rate.

Smoothed Extensions

Roel Matthysen

Fourier Extension

A closer look at A

Solving th system

2D Frames

Smoothed Extensions

Differential Equations

Smoothed Extensions

Extension convergence

When smoothed, the extension converges to some fixed function.

• Example: when smoothing the second derivative $(O(n^{-2})$ decay rate), the extension converges to a third degree polynomial that interpolates f(a), f(b), f'(a), f'(b).

Figure: Smoothed extension for increasing dof.

Roel Matthysen

Fourier Extensior

A closer look at A

Solving th system

2D Frames

Smoothed Extensions

Differential Equations

2D smoothing

2D functions can also easily be smoothed, example $f(x, y) = e^{x+y}$

Smoothed Extensions

Roel Matthysen

Fourier Extension

A closer look at A

Solving th system

2D Frame

Smoothed Extensions

Differential Equations

Differential Equations

Derivative is diagonal operator

$$f(x) = \sum_{m=-M}^{M} a_m \phi_m(x), \qquad f'(x) = \sum_{m=-M}^{M} \frac{a_m i \pi m}{T} \phi_m(x)$$

A differential equation

$$\Delta A + k^2 A = f$$

becomes

$$(D_x^2+D_y^2+k^2I)\boldsymbol{c}_A=\boldsymbol{c}_f$$

Boundary conditions

- Number of additional equations grows as the dimension of the boundary.
- When implemented correctly, this does not destroy the plateau/plunge region singular value distribution.
- Solving a differential equation has the same complexity as a FE.

Roel Matthysen

Fourier Extension

A closer look at A

Solving th system

2D Frames

Smoothed Extensions

Differential Equations

Poisson Equation

 $\Delta A = \cos(2\pi(x+y)),$

$$\delta A(x,y)/\delta y = 0, \quad (x,y) \in \delta \Omega$$

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frames

Smoothed Extensions

Differential Equations

Laplace Equation

$$\Delta A = 0,$$
 $A(x, y) = x - y,$ $(x, y) \in \delta \Omega$

Differential Equations

Roel Matthysen

Fourier Extension

A closer look at A

Solving th system

2D Frames

Smoothed Extensions

Differential Equations

Helmholtz Equation

$$\Delta A + 35^{2}A = e^{-200((x-0.3)^{2} + (y+0.3)^{2})}, \qquad A(x,y) = 0, \quad (x,y) \in \delta \Omega$$

Differential Equations

The end

Fourier Extensions: Algorithms and Applications

Roel Matthysen

Fourier Extension

A closer look at A

Solving th system

2D Frame

Smoothed Extensions

Differential Equations

GitHub julia

Julia code available at https://github.com/daanhb/Framefuns.jl