Roel Matthysen

Fourier Extension

A closer look at *A*

Solving the system

2D Frame

Conclusions

Fast Algorithms for Fourier Extensions

Roel Matthysen

August 27, 2015

Joint work with Daan Huybrechs

Department of Computer Science, KU Leuven

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frames

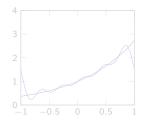
Conclusions

Setting

Given a function f as N data points on an equispaced grid, find an expansion in Fourier basis functions

- converges fast (geometric if f is analytic)
- is easily computable, O(N) computations.

Classical Fourier interpolation relies on periodicity for fast convergence.



Fourier interpolation for non-periodic functions exhibits the Gibbs phenomenon and converges very slowly.

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frames

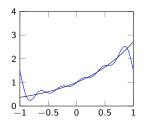
Conclusions

Setting

Given a function f as N data points on an equispaced grid, find an expansion in Fourier basis functions

- converges fast (geometric if f is analytic)
- is easily computable, O(N) computations.

Classical Fourier interpolation relies on periodicity for fast convergence.



Fourier interpolation for non-periodic functions exhibits the Gibbs phenomenon and converges very slowly.

Roel Matthysen

Fourier Extension

A closer look at A

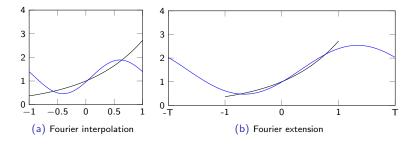
Solving the system 2D Frames

Conclusions

Fourier Extension

A Fourier Extension is an approximation of some function on a given domain in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate exp(x) through interpolation and Fourier extension for increasing dof:



Roel Matthysen

Fourier Extension

A closer look at A

Solving the system 2D Frames

Conclusions

Fourier Extension

A Fourier Extension is an approximation of some function on a given domain in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate $\exp(x)$ through interpolation and Fourier extension for increasing dof:



Roel Matthysen

Fourier Extension

A closer look at A

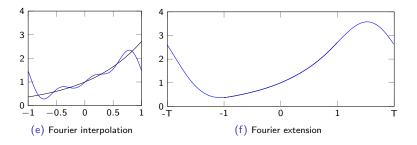
Solving the system 2D Frames

Conclusions

Fourier Extension

A Fourier Extension is an approximation of some function on a given domain in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate exp(x) through interpolation and Fourier extension for increasing dof:



Roel Matthysen

Fourier Extension

A closer look at A

Solving the system 2D Frames

Conclusions

Fourier Extension

A Fourier Extension is an approximation of some function on a given domain in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate $\exp(x)$ through interpolation and Fourier extension for increasing dof:



Roel Matthysen

Fourier Extension

A closer look at A

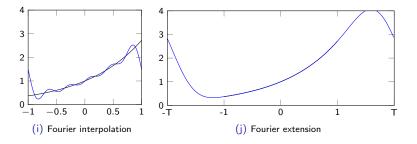
Solving the system 2D Frames

Conclusions

Fourier Extension

A Fourier Extension is an approximation of some function on a given domain in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate exp(x) through interpolation and Fourier extension for increasing dof:



Fourier Extension

for Fourier Extensions Roel Matthysen

Fast Algorithms

Fourier Extensior

- A closer look at A
- Solving the system
- 2D Frames
- Conclusions

Notation

- Frame basis functions $\phi_m(x) = \frac{1}{\sqrt{2T}} e^{i \frac{\pi m}{T} x}, m = -M, \dots, M$
- Approximation $g(x) = \sum_{k=-M}^{M} a_k \phi_k(x)$

Fitting the Fourier Extension

- Collocation at equidistant points $x_j = \frac{j}{N}, j = -N, \dots, N$.
- Least squares problem $A_{ij} = \phi_i(x_j)$, $b_j = f(x_j)$

$$Aa = b$$

- Some oversampling $N = \eta M$ required, A is rectangular
- A is DFT-subblock
- Fast solver for Aa = b needed
- Fast algorithm exists for T = 2 (Lyon 2011)

A closer look at A

Extensions Roel Matthysen

Fast Algorithms for Fourier

Fourier Extensio

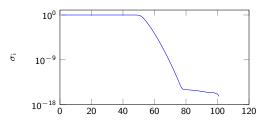
A closer look at A

Solving the system

2D Frame

Conclusions

Singular values of A



- Spectrum has a plateau shape (Slepian 1978, Wilson 1987)
- Size of transition/plunge/problematic region

$$1 - \epsilon > \theta_i > \epsilon$$

grows as $O(\log N)$.

System matrix is extremely ill-conditioned

Roel Matthysen

Fourier Extension

A closer look at A

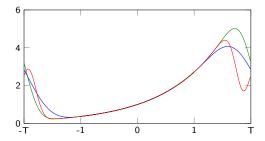
Solving the system

2D Frames

A closer look at A

Ill-conditioning explained

- A Frame is a set of vectors that spans a vector space, but is not necessarily linearly independent.
- Fourier basis restricted to interval constitutes a frame, a redundant basis
- Finding a representation is a very ill-conditioned problem



However, $||g - f||_{[-1,1]}$, $||h - f||_{[-1,1]}$, $||l - f||_{[-1,1]}$ are all small.

Roel Matthysen

Fourier Extension

A closer look at A

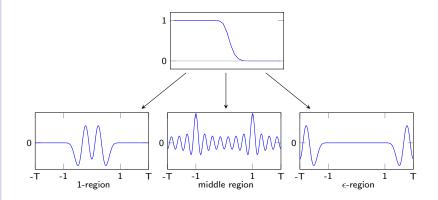
Solving the system

2D Frames

Conclusions

Ill-conditioning explained

Fourier series corresponding to the singular vectors of A:



• Solving with Truncated SVD yields approximation to machine accuracy (Adcock, Huybrechs, Martin-Vaquero 2014)

A closer look at A

Roel Matthysen

Fourier Extension

A closer look at *A*

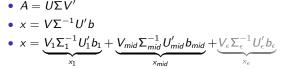
Solving the system

2D Frame

Conclusions

Solving the least-squares system

Truncated SVD



Assumption: b_{ϵ} is negligible (discrete Picard condition)

x_1 is easy when x_{mid} is known

•
$$b_1 = b - b_{mid} = b - A_{x_{mid}}$$

•
$$x_1 = V_1 \Sigma_1^{-1} U_1' b_1 \approx V_1 \Sigma_1 U_1' b_1 = A' b_1$$

All you need is one application of A and A' (fast!) How to find x_{mid} ?

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

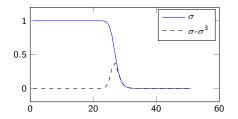
2D Frame

Conclusions

Isolating the problematic singular values

• 'Projection operator' I - AA' isolates the middle singular values

$$(I-AA')A=U(\Sigma-\Sigma^3)V'$$



The numerical nullspace of (I - AA')A contains both the 1 and ϵ -regions.

- Solving (I AA')Ax = (I AA')b yields x_{mid}
- (I AA')A has numerical rank $O(\log N)$
- This can be solved efficiently in $O(N \log^2 N)$

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

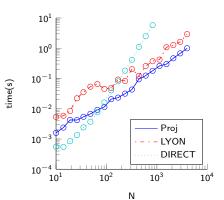
2D Frame

Conclusions

Algorithm

$$(I - AA')Ax_{eta} = (I - AA')b$$

 $x_{lpha} = A'(b - Ax_{eta})$
 $x = x_{lpha} + x_{eta}$



2D Frames

Fast Algorithms for Fourier Extensions

Roel Matthysen

Fourier Extension

A closer look at A

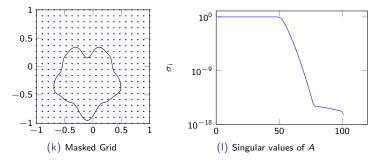
Solving the system

2D Frames

Conclusions

Fourier Frame

• A consists of selected rows of the 2D DFT matrix.



- Conjecture: the problematic region grows as $O(\sqrt{N})$ for N total points.
- The algorithm complexity becomes $O(N^2)$

Roel Matthysen

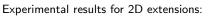
Fourier Extensior

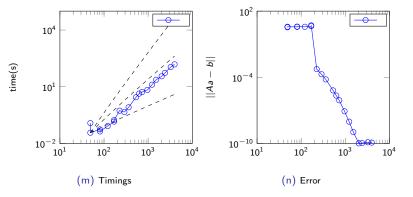
A closer look at A

Solving the system

2D Frames

Conclusions





- Complexity is $O(N^2)$, as expected
- Convergence speed is seemingly conserved

2D Frames

Roel Matthysen

Fourier Extension

A closer look at A

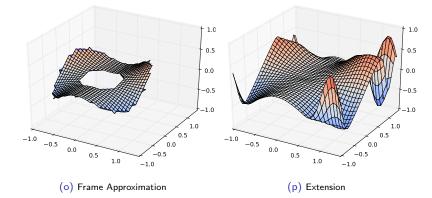
Solving the system

2D Frames

Conclusion

2D Fourier Frame

$$f(x,y) = \frac{5xy^2}{x^2 + y^2 + 4}, \quad D(x,y) = 1 > x^2 + y^2 > 0.4$$



2D Frames

Chebyshev Frame

- A consists of selected rows of the 2D Chebyshev interpolation matrix.
 - 10^{0} 0.5 0 Б 10^{-9} -0.5 10^{-18} -0.50 0.5 50 _1 n 100 (q) Masked Grid (r) Singular values of A
- Conjecture: the problematic region grows as $O(\sqrt{N})$ for N total points.
- The algorithm complexity becomes $O(N^2)$

Fast Algorithms for Fourier Extensions

Roel Matthysen

Fourier Extensior

A closer look at A

Solving the system

2D Frames

Conclusions

Roel Matthysen

Fourier Extension

A closer look at *A*

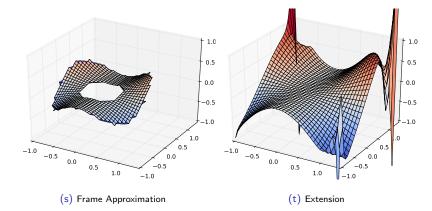
Solving the system

2D Frames

Conclusion

2D Chebyshev Frame

$$f(x,y) = \frac{5xy^2}{x^2 + y^2 + 4}, \quad D(x,y) = 1 > x^2 + y^2 > 0.4$$



Conclusions

Fast Algorithms for Fourier Extensions

Roel Matthysen

Fourier Extension

A closer look at A

Solving the system

2D Frames

Conclusions

- Fourier extensions provide efficient and fast converging representations in a Fourier basis
- Our algorithm generalizes previous algorithms, is concise and competitive in speed.
- The algorithm generalizes to any (frame collocation) system that shows the plateau in the spectrum.
- 2D Frame extensions are promising, but still require $O(N^2)$ operations.