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Setting

Given a function f as N data points on an equispaced grid, find an expansion
in Fourier basis functions

• converges fast (geometric if f is analytic)

• is easily computable, O(N) computations.

Classical Fourier interpolation relies on periodicity for fast convergence.
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Fourier interpolation for non-periodic functions exhibits the Gibbs
phenomenon and converges very slowly.
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Setting

Given a function f as N data points on an equispaced grid, find an expansion
in Fourier basis functions

• converges fast (geometric if f is analytic)

• is easily computable, O(N) computations.

Classical Fourier interpolation relies on periodicity for fast convergence.
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Fourier interpolation for non-periodic functions exhibits the Gibbs
phenomenon and converges very slowly.
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Fourier Extension

A Fourier Extension is an approximation of some function on a given domain
in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate exp(x) through interpolation and Fourier extension for
increasing dof:
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(a) Fourier interpolation
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(b) Fourier extension
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Fourier Extension

A Fourier Extension is an approximation of some function on a given domain
in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate exp(x) through interpolation and Fourier extension for
increasing dof:
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(c) Fourier interpolation
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(d) Fourier extension
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Fourier Extension

A Fourier Extension is an approximation of some function on a given domain
in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate exp(x) through interpolation and Fourier extension for
increasing dof:
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(e) Fourier interpolation
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(f) Fourier extension
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Fourier Extension

A Fourier Extension is an approximation of some function on a given domain
in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate exp(x) through interpolation and Fourier extension for
increasing dof:
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(g) Fourier interpolation
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(h) Fourier extension
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Fourier Extension

A Fourier Extension is an approximation of some function on a given domain
in a Fourier Basis on a larger domain (a Fourier Frame).

Example: approximate exp(x) through interpolation and Fourier extension for
increasing dof:
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(j) Fourier extension
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Fourier Extension

Notation

• Frame basis functions φm(x) = 1√
2T

e i
πm
T

x ,m = −M, . . . ,M

• Approximation g(x) =
∑M

k=−M akφk(x)

Fitting the Fourier Extension

• Collocation at equidistant points xj = j
N
, j = −N, . . . ,N.

• Least squares problem Aij = φi (xj), bj = f (xj)

Aa = b

• Some oversampling N = ηM required, A is rectangular

• A is DFT-subblock

• Fast solver for Aa = b needed

• Fast algorithm exists for T = 2 (Lyon 2011)
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A closer look at A

Singular values of A

0 20 40 60 80 100 120
10−18

10−9

100

σ
i

• Spectrum has a plateau shape (Slepian 1978, Wilson 1987)

• Size of transition/plunge/problematic region

1− ε > θi > ε

grows as O(logN).

• System matrix is extremely ill-conditioned
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A closer look at A

Ill-conditioning explained

• A Frame is a set of vectors that spans a vector space, but is not
necessarily linearly independent.

• Fourier basis restricted to interval constitutes a frame, a redundant basis

• Finding a representation is a very ill-conditioned problem
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However, ||g − f ||[−1,1], ||h − f ||[−1,1], ||l − f ||[−1,1] are all small.
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A closer look at A

Ill-conditioning explained

Fourier series corresponding to the singular vectors of A:
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middle region ε-region1-region

• Solving with Truncated SVD yields approximation to machine accuracy
(Adcock, Huybrechs, Martin-Vaquero 2014)
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Solving the least-squares system

Truncated SVD

• A = UΣV ′

• x = VΣ−1U ′b

• x = V1Σ−1
1 U ′1b1︸ ︷︷ ︸
x1

+VmidΣ−1
midU

′
midbmid︸ ︷︷ ︸

xmid

+VεΣ
−1
ε U ′εbε︸ ︷︷ ︸
xε

Assumption: bε is negligible (discrete Picard condition)

x1 is easy when xmid is known

• b1 = b − bmid = b − Axmid

• x1 = V1Σ−1
1 U ′1b1 ≈ V1Σ1U

′
1b1 = A′b1

All you need is one application of A and A′ (fast!)

How to find xmid?
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Isolating the problematic singular values

• ‘Projection operator’ I − AA′ isolates the middle singular values

(I − AA′)A = U(Σ− Σ3)V ′
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The numerical nullspace of (I − AA′)A contains both the 1 and ε-regions.

• Solving (I − AA′)Ax = (I − AA′)b yields xmid

• (I − AA′)A has numerical rank O(logN)

• This can be solved efficiently in O(N log2 N)
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Implementation

Algorithm

(I − AA′)Axβ = (I − AA′)b
xα = A′(b − Axβ)
x = xα + xβ

Results
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2D Frames

Fourier Frame

• A consists of selected rows of the 2D DFT matrix.
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(l) Singular values of A

• Conjecture: the problematic region grows as O(
√
N) for N total points.

• The algorithm complexity becomes O(N2)
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2D Frames

Experimental results for 2D extensions:
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• Complexity is O(N2), as expected

• Convergence speed is seemingly conserved
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2D Fourier Frame

f (x , y) =
5xy 2

x2 + y 2 + 4
, D(x , y) = 1 > x2 + y 2 > 0.4
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(o) Frame Approximation
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(p) Extension
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2D Frames

Chebyshev Frame

• A consists of selected rows of the 2D Chebyshev interpolation matrix.
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(r) Singular values of A

• Conjecture: the problematic region grows as O(
√
N) for N total points.

• The algorithm complexity becomes O(N2)
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2D Chebyshev Frame

f (x , y) =
5xy 2

x2 + y 2 + 4
, D(x , y) = 1 > x2 + y 2 > 0.4

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

(s) Frame Approximation

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0
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Conclusions

• Fourier extensions provide efficient and fast converging representations in
a Fourier basis

• Our algorithm generalizes previous algorithms, is concise and competitive
in speed.

• The algorithm generalizes to any (frame collocation) system that shows
the plateau in the spectrum.

• 2D Frame extensions are promising, but still require O(N2) operations.
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