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Abstract.
Fourier series of smooth, non-periodic functions on [�1, 1] are known to exhibit the Gibbs phenomenon, and exhibit

overall slow convergence. One way of overcoming these problems is by using a Fourier series on a larger domain, say
[�T, T ] with T > 1, a technique called Fourier extension or Fourier continuation. When constructed as the discrete
least squares minimizer in equidistant points, the Fourier extension for analytic functions has been shown shown to
converge at least superalgebraically in the truncation parameter N . A fast O(N log2 N) algorithm has been described
to compute Fourier extensions for the case where T = 2, compared to O(N3) for solving the dense discrete least squares
problem. We present two O(N log2 N) algorithms for the computation of these approximations for the case of general
T , made possible by exploiting the connection between Fourier extensions and Prolate Spheroidal Wave theory. The
first algorithm is based on the explicit computation of so-called periodic discrete prolate spheroidal sequences, while the
second algorithm is purely algebraic and only implicitly based on the theory.

1. Introduction. Fourier series are a good choice for the approximation of a smooth periodic
function on a bounded interval. They o↵er exponential convergence, good frequency resolution, and
the approximation can be computed numerically via the FFT. However, when the function is smooth
but non-periodic, the exponential convergence of a Fourier series over the interval is lost, and ringing
artefacts known as the Gibbs phenomenon are introduced.

The Fourier extension technique (FE) [5, 6, 7, 8] aims to transfer the desirable properties of
Fourier series for periodic functions to the non-periodic case. The principle is to approximate a non-
periodic function that is defined on [�1, 1] by a Fourier series that is periodic on [�T, T ]. While the
approximation may vary wildly in [�T,�1[ and ]1, T ], under certain conditions it is guaranteed to
converge exponentially to the original function within the interval. An illustration is shown in Figure
1.1, where the extension is seen to agree closely with the given function on [�1, 1]. Outside this interval,
the extension is arbitrary, and in most cases defined by the solution method.

The main di�culty with this technique is the ill-conditioning of the restricted Fourier basis. Nu-
merically, this leads to ill-conditioned linear systems, which are di�cult to solve e�ciently.
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0

Fig. 1.1: A periodic extension to [�T, T ] of a smooth function on [�1, 1].

These constructions have been known in embedded or fictitious domain methods for general bases.
A study on the approximation properties of extensions in the Fourier basis by Boyd [5] revealed that
inside the smaller interval, the extension can be exponentially converging to the function. Further,
he proposed the truncated singular value decomposition as a robust method for computing extensions
from equispaced data. The resulting scheme, named FPIC-SU, can compute extensions of functions
in the smaller interval, that are exact almost up to machine precision. The convergence rate is only
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limited by the smoothness of the function. Bruno et. al. used the same principle when approximating
surfaces by Fourier series on extended domains[7]. This provided a starting point for the very e�cient
FC-Gram method [9, 25, 4].

Exponential error convergence of the FE problem was proven in [18] when inverting the Grammian
matrix of the continuous least squares problem. Later, Adcock et. al extended the convergence analysis
to the discrete least squares problem on equispaced data. At least superalgebraic convergence was
proven for analytic functions, when using the truncated SVD [2].

From an implementation point of view, the cost of the full SVD required for the FPIC-SU is
prohibitively large. Recently, an FE algorithm was introduced by Lyon [23] that computes extensions
in O(N log2 N) time. However, this algorithm only produces extensions of double length, i. e. it is
unique to the case T = 2. Due to the reliance on symmetries only present when T is a power of 2, the
algorithm cannot easily be extended to arbitrary T .

In this paper we present fast algorithms for the computation of Fourier extensions of arbitrary
extension length. One argument for varying the parameter T is found in the resolution power of
the extension. The number of degrees of freedom per wavelength to represent an oscillatory function
approaches the optimal value of 2 as T approaches 1 from above [1]. When T = 2, that number has
already doubled. Other arguments may be performance related, as one may for example tune the
length of the FFTs that are used in the computations, or a restriction on the data may be found in
the application itself.

Our algorithms stem from connecting the FE problem with classical results from signal processing
theory. We state how it is essentially equivalent to the problem of bandlimited extrapolation. Central
in this discussion are the so-called Prolate Spheroidal Wave functions, originally introduced at Bell
labs in the 1970s [30, 21, 22]. The study of these functions and their special properties has been an
active domain in signal processing since.

The connection with Prolate Spheroidal Wave theory leads to explicit formulations for eigenvectors
of the FE problem. Analysis of the FE problem learns that the relevant ill-conditioning can be captured
using just O(logN) of these vectors. Combined with a fast solver for the remaining well-conditioned
problem this leads to O(N log2 N) solvers.

We explore two approaches in detail. In the first approach, a set of O(logN) discrete prolate
spheroidal sequences is explicitly computed. This is based on their known properties: the vectors are
known to be eigenvectors of a tridiagonal matrix. The second approach is purely algebraic and is not
explicitly based on prolate spheroidal wave theory. Hence, this approach is more generally applicable.
Both approaches have comparable performance, with a slight edge for the first approach.

1.1. Overview of the paper. We formally state the FE problem in §2 and summarize relevant
previous results. A concise overview of Prolate Spheroidal Wave functions is presented in §3, including
subsequent work on discrete variants. The connection between these discrete variants and the FE
problem is used to obtain fast algorithms in §4. Finally, we present numerical experiments to illustrate
the numerical performance of these algorithms in §5.

2. Fourier extensions.

2.1. Problem formulation. For the remainder of this paper we will focus on infinitely di↵er-
entiable non-periodic functions f on the interval [�1, 1]. Other intervals are easily dealt with through
a�ne transformations.

The approximation is constructed on the extended interval [�T, T ], with T the extension param-
eter. For ease of notation denote

�
k

(x) =
1p
2T

ei
k⇡
T x.

Then

G
N

= {�
k

}
k=�n,...,n
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is the set of N = 2n + 1 Fourier basis functions on the extended interval. The Fourier extension
problem is now formalised as finding an approximation F

N

(f) such that

F
N

(f) = min
g2GN

||f � g||
[�1,1]

. (2.1)

We note that the infinite set G1 is a basis for L2 on the extended interval [�T, T ], but it constitutes
a frame on [�1, 1] [12], i.e. it is redundant. This reflects the fact that a function can be extended in
di↵erent ways. Once truncated to finite N , G

N

is actually a basis on [�1, 1], albeit a very ill-conditioned
one. We refer to [2] for a detailed discussion of this point of view.

In an implementation context, it is more natural to consider the search for the Fourier coe�cients
a 2 CN ,

a = min
c2CN

||f �
nX

k=�n

c
k

�
k

||
[�1,1]

.

Depending on the norm to be minimised, the extension problem takes on a di↵erent formulation:
Discrete Fourier extensions. Most practical applications provide information about f as samples

in a predefined set of points. The norm in (2.1) is then conveniently replaced by a discrete least squares
norm

F̃
N

(f) = min
g2GN

X

l

(f(x
l

)� g(x
l

))2 , x
l

2 [�1, 1]. (2.2)

Previous work distinguishes between uniform sampling, and an optimal sampling set called mapped
symmetric Chebychev nodes [1]. The focus of this paper is on the case where the sampling points are
uniform,

x
l

=
l

m
, l = �m, . . . ,m,

for a total of M = 2m+1 points. Typically, some oversampling � is used so M = �N > N . Including
appropriate normalisation, this leads to the matrix formulation that is used throughout the rest of the
paper. Let

A
l,k

= �
k

(x
l

) =
1p
2Tm

ei
⇡kl
Tm , b

l

=
1p
m
f(x

l

), l = �m, . . . ,m, k = �n, . . . , n. (2.3)

Note that matrix-vector products involving A can be performed very e�ciently using FFTs of length
L = 2Tm. Therefore L is assumed to be integer for the remainder of this paper.

The Fourier coe�cients are then found by collocation, through solving the rectangular system

Aa ⇡ b (2.4)

in a least squares sense. Note that due to the nature of the problem we are not interested in a specific
solution a, just one of the possibly many solutions that lead to a small residual ||Aa� b||. Solving this
problem e�ciently is the focal point of this paper.

Continuous Fourier extensions. When the norm is the regular L2-norm over [�1, 1],

F
N

(f) = min
g2GN

||f � g||
2,[�1,1]

is known as the continuous Fourier extension. The resulting least-squares problem can be solved by
formulating the Grammian matrix. Let

Ā
i,j

=

Z
1

�1

�
i

(x)�
j

(x)dx =
sin ⇡(i�j)

T

⇡(i� j)
, b

i

=

Z
1

�1

f�
i

(x)dx, i, j = �n, . . . , n. (2.5)

Then the Fourier coe�cients follow from

Āa = b. (2.6)
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2.2. Convergence and stability. The usefulness of approximation schemes hinges on two prop-
erties: the speed of convergence to the given function, and the stability of the required computations.
Considerable e↵ort has been put into quantifying these properties both analytically and numerically
[18] [1] [2] [24]. Without going into too much detail, we recap the most important results.

First of all, a distinction should be made between the exact discrete and continuous FE solutions
F̃
N

(f) and F
N

(f), and their computer-implemented counterparts. Computing the exact solutions
is known to be unstable, as they can grow unbounded outside the interval of interest. Numerical
algorithms however will never compute these exact solutions. Due to regularisation, the numerical
FEs G̃

N

(f) and G
N

(f) are more stable, while maintaining the desired convergence behaviour. In [2],
the truncated SVD was used as a model scheme for solving the ill-conditioned systems (2.3) and (2.5).
Given the Singular Value Decomposition of the FE matrix A = USV 0, the solution to Aa = b is

a = V S†U 0b, S†
i,i

=

(
1

Si,i
S
i,i

> ⌧

0 otherwise.
(2.7)

The truncation parameter ⌧ then acts as a regularisation parameter. It is usually chosen close to the
machine precision.

Stability. Following [2], stability is defined in terms of the absolute condition number of the FE
mapping

(F
N

) = sup{||F
N

(b)|| : b 2 CN , ||b|| = 1},

where, with slight abuse of notation, F
N

(b) is the solution to the FE problem with right hand side b,
and || · || is the regular l2 norm over [�1, 1]. This condition number can be computed for the continuous
and discrete FEs, both the exact and numerical versions. It was shown to grow exponentially in N for
the exact solution to the continuous and discrete FE problem.

When looking at the numerical FEs the situation changes considerably. The condition number
of the numerical continuous FE mapping is (G

N

) . 1/
p
⌧ . The condition number of the numerical

discrete FE (G̃
N

) is dependent on a constant 0 < a(�;T )  1, independent of N , that satisfies
a(�;T ) ! 0 as � ! 1 for fixed T . It is given by (G̃

N

) . ⌧�a(�;T ), 8N 2 N . This means that for
a su�ciently large oversampling factor �, the condition number of the numerical FE mapping can be
made reasonably close to 1.

Meanwhile, the condition number of the matrices A and Ā grows exponentially as N ! 1, where
M � N for the discrete FE. This is surprising, given the good condition of the FE mapping. It can be
understood by noting that extensions with small coe�cient norm and small residual are guaranteed
to exist. The numerical algorithms will steer clear of the unstable exact solution, and instead return
one of these alternatives. For a full exposition on the stability of FE calculations, see [2].

Convergence. Concerning convergence, results in [2] are valuable only for functions that are ana-
lytic in a region D(⇢⇤) of the complex plane and continuous on its border. This region is a Bernstein
ellipse under a transformation that allows Fourier extensions to be understood as polynomial approx-
imations. For such functions f , the exact continuous and discrete FEs converge geometrically, with a
speed

||f � F̃
N

(f)||  c
f

⇢�N .

Here ⇢ = min{⇢⇤, E(T )} and c
f

is proportional to max
x2D(⇢)

|f(x)|. E(T ) is known as the Fourier
extension constant and is given by cot2

�
⇡

4T

�
. Note that for the exact discrete FE, there is an added

requirement of scaling M as O(N2), to avoid the Runge phenomenon.
Under the same analyticity conditions, the error decay of the numerical counterparts G

N

and G̃
N

can be broken down into several subregions:
1. If N < N

2

, where N
2

is a function-independent breakpoint, ||f�G̃
N

(f)|| converges or diverges
exponentially fast at the same rate as the exact solution.
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2. When N  N
0

(continuous) or N
2

 N  N
1

:= 2N
0

(discrete), where N
0

is another function-
independent breakpoint depending, both ||f �G

N

(f)|| and ||f � G̃
N

(f)|| decay like ⇢�N .
3. When N = N

0

or N = N
1

, the errors are approximately

||f �G
N

0

(f)|| ⇡ c
f

(
p
⌧)df , ||f � G̃

N

1

(f)|| ⇡ c
f

⌧df�a(�;T ),

where c
f

is as before, and d
f

= log ⇢

logE(T )

2 (0, 1].
4. When N > N

0

or N > N
1

, the errors decay at least super algebraically fast down to maximal
achievable accuracies of order

p
⌧ and ⌧1�a(�;T ) respectively.

This behaviour of the error o↵ers insight into the usability of Fourier extensions. A first observation
is that the continuous FE is limited to a maximal achievable accuracy of

p
⌧ . Coupled with the need

to compute Fourier integrals to compose the right hand side b in (2.5), this makes the continuous FE
unfit for practical use. However, the algorithms presented in §4 for the discrete FE can be adapted to
this context with little extra e↵ort. This is documented in §4.3.

On the contrary, the numerical discrete FE guarantees convergence up to a certain power of ⌧ . By
varying this cuto↵, the oversampling and the extension length T this maximum achievable accuracy
can be made very close to the machine precision.

2.3. Influence of the extension length. The main contributions of this paper are algorithms
that add flexibility in the choice of extension length T . The increased resolution power was already
cited as an argument to reduce T , but it is important to be aware of the possible consequences.
Therefore, in this section we summarize the influence of this parameter on convergence, resolution
power, and conditioning of the FE problem.

First note that the Fourier extension constant E(T ) grows with T . For functions analytic in a
su�ciently large region, the convergence rate ⇢ is limited by this constant. Increasing T thus increases
the convergence rate, and vice versa.

The resolution power of a scheme, first studied by Gottlieb and Orszag [15] is a measure of the
amount of point samples needed to resolve an oscillatory function to a certain precision. Let

R(!, �) = min{N 2 N : ||ei⇡! � F
N

(ei⇡!)||1 < �}, ! > 0,

for some small �. Then F
N

has a resolution constant r if

R(!, �) ⇠ r!, ! ! 1.

For regular Fourier series, this constant has the optimal value 2.
A theoretical argument shows that for the continuous FE this resolution constant increases with

T [1]. More specifically,

r(T )  2T sin
⇣ ⇡

2T

⌘
, T 2 (1,1).

Thus, for T ⇡ 1 the resolution constant r(t) ⇡ 2T is close to optimal. When T tends to infinity,
r(T ) ⇠ ⇡. It is even possible to optimally balance convergence speed with resolution power when
aiming for a predetermined accuracy ✏

tol

. This is achieved by varying T with N , specifically

T (N, ✏
tol

) =
⇡

4

⇣
arctan(✏

tol

)
1

2N

⌘�1

. (2.8)

Although no equivalent analysis exists for the discrete FE, there have been several attempts to
determine FE parameters that are in some sense optimal. In [8], Bruno et. al. suggest the values T = 2
and � = 2 as a general rule of thumb, but at the same time notes that the optimal parameters are
heavily function dependent. Note that increasing both the extension length T and the oversampling
� will likely increase the resolution constant r. Especially since it was shown in [1] that the limit
r(T ) ⇠ ⇡ as T ! 1 no longer holds for a discretised FE, instead the resolution constant grows as
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r(T ) ⇠ 2T . Even though this was only observed for data points distributed as a variant of Chebychev
points, it is indicative that the resolution constant for T = 2, � = 2 will be considerably above the
optimal value.

The precise interplay between T and � on the one hand, and resolution power and conditioning on
the other hand was studied in detail by Adcock and Rua [3]. They found that the condition number
(G̃

N

) of the equispaced discrete FE depends only on the product T�. Increasing either will lower
the condition number. Thus as long as � is increased or decreased accordingly when varying T , the
conditioning of the FE mapping remains constant. This is cited as an argument to limit T to 2, to
profit from the at the time only available fast FE algorithm.

Furthermore, the resolution constant is also dependent on the product T�, growing as r(T ) ⇠ T�.
This illustrates the tradeo↵ between resolution power and conditioning. Numerical experiments in [3]
showed that by allowing the condition number to grow from  ⇡ 10 to  ⇡ 100, the resolution constant
was halved, while further increasing  had very little additional value. However, it should be noted
that these experiments were only carried out for T = 2. Lifting the restriction on T may thus o↵er
more flexibility in finding a balance between resolution power and conditioning.

An interesting open problem raised in [3] is the possibility to vary T with M , to achieve optimal
resolution power in a manner similar to (2.8). Due to the lack of a fast algorithm, any gains from
varying T were considered of limited practical usability compared to the fast algorithm for T = 2. The
fast algorithms presented in this paper warrant a closer look at the possible benefits from this method.

Remark 1. The fast algorithms in this paper all depend on the application of the FFT, requiring
L = T (M � 1) to be integer. Strictly speaking, this means that T is restricted to be a rational number
and, hence, T is not completely arbitrary. Furthermore, in applications where the number of function
samples M is fixed in advance, T can only vary in increments of 1/(M � 1). For large M , the latter
restriction is not very limiting. The restriction to a rational number, say T = p/q, means that the
methods will be more practical if the denominator q is not too large, since large q would necessitate
large values of L and M .

3. Prolate spheroidal wave functions and discrete variants. A long-standing problem in
signal processing theory is that of bandlimited extrapolation. The problem is, assuming some portion
of a bandlimited signal is known, to accurately predict the missing data. In a first subsection we explain
how the FE problem is a specific variant of this problem. The subsequent sections then explore the
theory of Prolate Spheroidal Wave functions, that plays a major role in bandlimited extrapolation, for
further use in the FE algorithms.

3.1. Discrete Fourier extensions and bandlimited extrapolation. The discrete Fourier
extension is closely related to discrete band limited extrapolation, i.e., to the problem of reconstructing
a discrete bandlimited signal from a number of data samples. Simply put, we are looking for a vector
y with discrete Fourier transform Y such that

y[k] ⇡ f [k] k 2 S
M,t

Y [l] = 0 l 62 S
N,!

,

where f is the sample data, and S
M,t

and S
N,!

are sampling sets in the discrete time and frequency
domains, of sizes M and N respectively. Depending on the problem parameters the solution might not
be unique. In this case an additional minimal solution norm constraint can be added [19].

A popular method is the Papoulis-Gerschberg algorithm [14] [26]. It uses a two-step iteration
process to alternate matching the given data and complying with the frequency constraints. Variants
that use the conjugate gradients and related methods to speed up the iteration process tend to perform
reasonably well numerically [31]. They operate at a cost of O(N logN) operations per iteration, where
the number of iterations scales with the bandwidth of the signal.

Besides these iterative methods, considerable attention was given to direct methods for solving
this discrete problem. One such method is the one proposed by Jain and Ranganath [19], where both
the time and frequency sampling sets are contiguous, i. e. S

t

= �m, . . . ,m and S
!

= �n, . . . , n. They
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commence by writing the data as a function of the unknown coe�cients:

f = Jy = D
M

B
N

y (3.1)

D
M,i,j

= �
i,j

, |i|, |j|  m (3.2)

B
N,p,l

=
1

L

nX

k=�n

exp i
(p� l)2⇡k

L
=

1

L

sin
⇣

(p�l)N⇡

L

⌘

sin
⇣

(p�l)⇡

L

⌘ . (3.3)

Here, B
N

is a L ⇥ L circulant matrix that represents a discrete low-pass filter, and D
M

is a M ⇥ L
selection operator. �

i,j

is the kronecker delta. D0
M

is an extension operator that pads a sequence of
length M with zeros to length L.

The direct methods of Jain and Ranganath then consist of solving Jy = f in a least squares sense
by formulating the normal equations

J 0Jy = J 0f.

Since J 0J is symmetric positive definite and Toeplitz, the Levinson-Trench algorithm can be applied
to compute the inverse of J 0J in O(L2) operations. They also suggested another approach, using the
singular value decomposition of J to solve the least-squares problem. The resulting singular vectors
were named periodic discrete prolate spheroidal sequences (P-DPSSs), after the prolate spheroidal
wave functions (PSWFs) arising in continuous bandlimited extrapolation.

A closer look at the matrix A from the discrete Fourier extension (2.3) makes the relation with
(3.1) apparent. Adopting the notation for the DFT length L = 2Tm,

(AA0)
pq

=
1

L

nX

k=�n

exp i
(p� q)2⇡k

L
, p, q = �m, . . . ,m

= (D
M

B
N

D0
M

)
pq

= (JJ 0)
pq

, (3.4)

where the last line follows from the idempotency of B
N

. Consequently, A and J share the same left
singular vectors, and the same singular values. Essentially, discrete Fourier extension is a reformulation
of the bandlimited extrapolation problem with the N frequency coe�cients as unknowns, instead of
the extrapolated signal. The focus has also shifted from determining an accurate extension to the
approximation of the given data samples.

The next sections concern the PSWFs and P-DPSSs, and how they are natural solutions for the
bandlimited extrapolation problem. The groundwork for this theory was detailed in a series of papers
by Slepian, Landau and Pollak from 1961 onwards [30, 21, 22, 27, 28]. An overview is given in [29].

3.2. Prolate Spheroidal Wave Functions. Denote by f(x) and F(⇠) a function in L2 and its
Fourier transform, so that

F (⇠) =

Z 1

�1
f(x)e�2⇡ix⇠ds, f(x) =

Z 1

�1
F (⇠)e2⇡ix⇠d⇠.

The time- and bandlimiting operators D and B are then defined as

Df(x) = f̂(x) =

(
f(x) |x|  T

0 |x| > T
Bf(x) =

Z
⌦

�⌦

F (⇠)ei2⇡⇠xd⇠, (3.5)

which project onto L2

[�T,T ]

and PW
⌦

, the Paley-Wiener space of bandlimited functions, respectively.
Note that the bandlimiting operator can also be written as

Bf(x) =
Z 1

�1
f(s)

sin(2⇡⌦(x� s))

⇡(x� s)
ds.
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The Heisenberg-Gabor limit states that no nonzero function can be simultaneously concentrated
in both time and frequency, and so 8f 6= 0 : ||BDf || < ||f ||. However, one can look for nearly-invariant
functions under this operator, functions for which ||BDf ||/||f || is as close to 1 as possible.

These are the eigenfunctions of the operator BD, i. e. the solutions of the integral equation

� (x) =

Z
T

�T

 (s)
sin(2⇡⌦(x� s))

⇡(x� s)
ds. (3.6)

Slepian and collaborators showed that this equation is solvable only for select values of �, a
countably infinite set 1 > �

0

> �
1

> · · · > 0. The corresponding eigenfunctions  
i

were named Prolate
Spheroidal Wave functions. The naming stems from the curious observation that these functions are
solutions to the spheroidal wave equation

✓
1� x2

T 2

◆
d2 

i

dx2

� 2x
d 

i

dx
� (2⇡⌦T )2 x2 

i

= ✓
i

 
i

. (3.7)

This is a Sturm-Liouville equation with a set of unique eigenvalues · · · > ✓
i�1

> ✓
i

> ✓
i+1

> . . .
corresponding to the functions  

i

[30].
Since B and D are idempotent operators, it is convenient to consider the  

i

eigenfunctions of the
Hermitian operator BDB. Timelimiting both sides of (3.6), the timelimited functions  ̂

i

= D 
i

are the
eigenfunctions of the Hermitian operator DBD, with corresponding eigenvalues �

i

. The term Prolate
Spheroidal Wave function is used for both the  

i

and the  ̂
i

.
As eigenfunctions of a Hermitian operator, the  

i

and  ̂
i

are orthogonal

Z 1

�1
 
i

(x) 
j

(x)dx = �
ij

Z
T

�T

 ̂
i

(x) ̂
j

(x)dx = �
i

�
ij

,

and they are complete in PW
⌦

and L2

[�T,T ]

, respectively. The Prolate Spheroidal Wave functions
thus form an orthogonal base for PW

⌦

, and the eigenvalue �
i

represents the fraction of energy of  
i

contained in [�T, T ].
This leads to a straightforward approach to continuous bandlimited extrapolation. Let f be a

function segment in L2

[�T,T ]

. Then

g =
X

i

1

�
i

h ̂
i

, fi
[�T,T ]

 
i

(3.8)

is a bandlimited function that agrees with f in the interval due to the completeness of the  ̂
i

in L2

[�T,T ]

.
Furthermore, when truncating the sum, the first terms have the largest eigenvalues and capture the
most energy inside the interval.

Using both (3.6) and (3.7), the PSWFs were further shown to have the following properties [30]:
i The  

i

are eigenfunctions of the finite Fourier transform,

Z
T

�T

ei2⇡t⇠ 
n

(t)dt = in
✓
�T

⌦

◆
1/2

 
n

✓
⇠T

⌦

◆
.

ii The eigenvalues �
i

cluster near 1 for low values of i, and decay exponentially after a set breakpoint

�
i

⇡ 1, i ⌧ 4⌦T and �
i

⇡ 0, i � 4⌦T.

The width of the region where �
i

2 (✏, 1� ✏) grows as log(⌦T ).
The first property illustrates the symmetry of time and frequency domain in this problem. The
second property shows that a truncated approximation (3.8) will require ⇡ 4⌦T terms. The increasing
irregularity of the �̂

i

coupled with the exponential decay of the �
i

ensures that g will converge rapidly
after this breakpoint for a su�ciently regular f .
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3.3. Periodic Discrete Prolate Spheroidal Sequences. There are several possible discreti-
sations for PSWFs. The most well-known is the one proposed by Slepian, where the Fourier transform
is replaced with the discrete-time Fourier transform

G(f) =
1X

n=�1
g[n]e�i2⇡fn, g[n] =

1

2⇡

Z
1/2

�1/2

G(f)ei2⇡fndf.

The resulting generalisations are frequency domain functions on [�1/2, 1/2] commonly referred to as
discrete prolate spheroidal wave functions (DPSWFs), and infinite sequences in the time domain called
discrete prolate spheroidal sequences (DPSSs). The properties from section 3.2 carry over, apart from
some loss of symmetry between time and frequency domains [28].

Another approach was proposed independently by Jain and Ranganath [19] and Grünbaum [17],
and elaborated on in [33]. They replace the Fourier transform with the DFT for sequences of length
L:

H
k

=
L�1X

n=0

h[n]e�i2⇡kn/L h[n] =
1

L

L�1X

k=0

H
k

ei2⇡kn/L.

The discrete analogues of the time- and bandlimiting operators are given by the matrices (3.2) and (3.3)
from the discrete band limited extrapolation problem. Similar to the continuous PSWFs, the periodic
discrete prolate spheroidal sequences (P-DPSS) �

i

are defined as the eigenvectors of the hermitian
matrix operator B

N

D0
M

D
M

B
N

, and their limited versions �̂
i

as the eigenvectors of D
M

B
N

D
M

B
N

D0
M

D
M

B
N

�
i

= �
i

�
i

D
M

B
N

D0
M

�̂
i

= �
i

�̂
i

. (3.9)

Since D
M

B
N

D0
M

is not of full rank when M > N , an additional requirement that �
i

6= 0 is imposed,
following [33]. Consequently, there are only {min(N,M)} P-DPSSs.

The �
i

properties are similar to those of PSWFs:
i If M � N , the �

i

are complete in the space of bandlimited sequences spanned by B
N

.
ii If M  N , the �̂

i

are complete in RM .
iii The �

i

are doubly orthogonal

�
i

· �
j

= �
ij

, D�
i

·D�
j

= �
i

�
ij

iv The P-DPSSs are eigenvectors of the finite DFT, but with the roles of M and N interchanged

D
N

F�
M,N,i

= �̂
N,M,i

.

Here, F is the DFT matrix of size L.
v Among sequences of length L, with frequency support in [0,m] [ [L �m,L], �

0

is the most con-
centrated in [0,M � 1]. Among sequences of equally limited frequency support orthogonal to �

0

,
�
1

is the most concentrated in [0,M � 1], and so on.
vi Like the eigenvalues of the PSWFs, the eigenvalues �

i

are distinct and cluster exponentially near
1 and 0, in that

�
i

⇡ 1, i ⌧ NM

L
and �

i

⇡ 0, i � NM

L
.

The width of the plunge region where �
i

2 (✏, 1� ✏) grows as log(NM/L) [32].
vii The P-DPSSs satisfy a second order di↵erence equation [33]

b
k

�̂
i

[k � 1] + c
k

�̂
i

[k] + b
k+1

�̂
i

[k + 1] = ✓
i

�̂
i

[k], k = 0, . . . ,M � 1, (3.10)

with coe�cients

b
k

= sin

✓
⇡k

L

◆
sin

✓
⇡(M � k)

L

◆

c
k

= � cos

✓
⇡(2k + 1�M)

L

◆
cos

✓
⇡N

L

◆
.
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Equation (3.9) clarifies their importance in both the discrete band limited extrapolation problem,
and discrete Fourier extensions. From (3.4) it is obvious that the eigenvectors of AA0 and JJ 0 are the
limited P-DPSSs �̂

i

. Regarding the singular value decompositions of A and J, this determines the left
singular vectors as �̂

i

and the associated singular values as
p
�
i

. For J , following

J 0J = B0
N

D0
M

D
M

B
N

= B
N

D
M

B
N

,

the right singular vectors are seen to be full P-DPSSs �
i

. Using these relations, Jains SVD method
results in an extrapolated sequence

g[n] =
N�1X

i=0

1p
�
i

⇣
�̂
i

· f
⌘
�
i

,

similar to the continuous extrapolation (3.8).
The discrete Fourier extension matrix A di↵ers from J in the right singular vectors. Similar to

(3.4)

A0A =

(
mX

l=�m

exp i
(p� q)2⇡k

L

)
, p, q = �n, . . . , n

= D
N

B
M

D
N

.

The right singular vectors are then again limited P-DPSSs �̂
i

, where the parameters N and M have
been interchanged. Using �̂ to represent the set of P-DPSSs and ⌥ for the diagonal matrix of eigen-
values, the SVD of A is given by

A = �̂
M,N

p
⌥�̂0

N,M

.

Calculating the coe�cients of the discrete FE by truncating the SVD now corresponds to

a =
icX

i=0

1p
�
i

⇣
�̂
N,M,i

· f
⌘
�̂
M,N,i

,

where i
c

is determined by the cuto↵ parameter,

p
�
ic � ⌧ >

p
�
ic+1

.

This formulation of the FE together with the P-DPSS properties listed above leads to the fast algo-
rithms in the next section.

4. Algorithms. In this section we present two approaches to computing the truncated SVD
solution to the discrete Fourier extension problem Ax = b. Both approaches are based on a specific
division in easier subproblems, which is explained below. They di↵er only in how they solve one of
these subproblems. Detailed algorithms follow in sections 4.1 and 4.2.

From the previous section, the SVD of the FE matrix A is

A = U⌃V 0 = �̂
M,N

p
⌥�̂0

N,M

.

The cost of this full SVD is prohibitively large, growing as O(N3). To reach the performance goal
of O(N logN) operations, two subproblems are identified and solved in succession. The key to this
division is in the distribution of the singular values ⌃, as shown in figure 4.1. Three distinct regions
are visible. Following property (vi) of the P-DPSS, they are for some small cuto↵ ⌧ :

• A region I
↵

:= {� : 1 > � > 1 � ⌧} where all singular values are 1 up to a tolerance ⌧ . This
region contains approximately O(NM/L) singular values.

10



N/T

10�16

10�8

100

i

�
i

I
�

I
�

I
↵

Fig. 4.1: The subdivision of the spectrum of A into three distinct intervals, with cuto↵ parameter
⌧ = 1e� 14. Due to rounding errors, the eigenvalues in region I

�

don’t decay past machine precision.

• A region I
�

:= {� : 1� ⌧ � � > ⌧}, also referred to as the “plunge region” in a more general
context regarding truncated frames. The number of singular values in this region grows as
O(log (NM/L)).

• A region I
�

:= {� : ⌧ � � > 0} where the singular values further decay exponentially.
Let the subdivision of the singular values and associated vectors be denoted by

A =
⇥
U
↵

U
�

U
�

⇤
2

4
⌃

↵

⌃
�

⌃
�

3

5 ⇥V
↵

V
�

V
�

⇤0
.

The truncated SVD solution to the problem Ax = b with truncation cuto↵ at ⌧ is then

x = x
↵

+ x
�

= V
↵

⌃�1

↵

U 0
↵

b
↵

+ V
�

⌃�1

�

U 0
�

b
�

, (4.1)

where the inverse operator applies to the diagonal elements. The right hand side is split along the
orthogonal spans of U

↵

, U
�

and U
�

, i.e.,

b
↵

= U
↵

U 0
↵

b,

and so on. Note that this solution method implicitly assumes b
�

to be below the required solution
accuracy. If it is not, a large solution term x

�

is needed, with ||x
�

|| � 1

⌧

||b
�

||. In this case, we say the
Fourier extension has not yet converged, and N should be increased.

Equation (4.1) splits the problem into two orthogonal subproblems. The isolation of V
�

, S
�

and U
�

from the plunge region and e�cient calculation of x
�

is where the two approaches given in sections 4.1
and 4.2 di↵er.

The subsequent calculation of x
↵

is then straightforward, based on the following observation:

A0(b� b
�

) = V
↵

⌃
↵

U 0
↵

b
↵

+ V
�

⌃
�

U 0
�

b
�

= V
↵

⌃�1

↵

U 0
↵

b
↵

+O(⌧)

= x
↵

+O(⌧)

The b
�

term, which is already assumed to be negligible, is fully eliminated by the additional O(⌧)
factor ⌃

�

. Noting that ⌃
↵

= ⌃�1

↵

+O(⌧) then yields x
↵

at the cost of a single fast multiplication with
A0 (O(N logN)).
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4.1. Approach 1: explicit projection onto prolate sequences. Due to the intrinsic connec-
tion of the FE problem with DPSSs, it is possible to explicitly compute U

�

,⌃
�

and V 0
�

. The second
order di↵erence equation from (3.10) implies that

Z
M,N

�̂
M,N,i

= ✓
i

�̂
M,N,i

, Z
M,N

=

2

66664

c
0

b
1

b
1

c
1

. . .
. . .

. . . b
N�1

b
N�1

c
N�1

3

77775
. (4.2)

The P-DPSSs can thus be found as eigenvectors of a tridiagonal matrix. The �̂
M,N,i

that make
up U are eigenvectors of Z

M,N

. The dual matrix Z
N,M

yields the right singular vectors V . With the
P-DPSSs known, the original singular value is found in O(N logN) operations as

�
i

= �̂0
m,n,i

A�̂
n,m,i

This approach is already in use for the regular DPSSs [16].
In this stage of the algorithm however, we are only interested in a subset of the singular values

and vectors. Since the number of singular values in the plunge region is logarithmically small, we
look to algorithms that calculate k eigenvalues and eigenvectors of a tridiagonal matrix Z in O(kN)
operations [11]. Algorithms for this computation require as input for the desired eigenvalues ✓

i

of Z
either:

• A range [C
1

, C
2

]: the algorithm then finds all ✓ : C
1

 ✓  C
2

.
• A index set {i

min

, . . . , i
max

}: the algorithm then finds all ✓ : ✓
i

min

 ✓  ✓
i

max

, from the
ordered set ✓

0

� ✓
1

� . . . .
The algorithms thus require knowing the ✓

j

, or alternatively the indices j, that correspond to
�
i

2 I
�

. Denote the mappings between �
i

and ✓
j

, and between their indices i and j, by

✓
j

= G
N,M

(�
i

), j = G0
N,M

(i) ,
(
�̂0
i

Z
N,M

�̂
i

= ✓
j

�̂0
i

A
N,M

�̂
i

= �
i

.

The description of G
N,M

(I
�

) is di�cult, as very little is known of this mapping. The only known trait
is monotonicity, a trait shared with the PSWF and DPSWF equivalents. This is already very helpful,
since it implies that G0

N,M

(i) = i.
Theorem 1. For M � N , the mapping G0

N,M

is monotone,

8i
1

, i
2

: i
1

> i
2

, G0
N,M

(i
1

) > G0
N,M

(i
2

).

Proof. The proof follows a mechanism used by Slepian in both [30, p. 61] and [28, §4.1]. The
continuity of eigenvalues and eigenvectors as a function of a parameter, combined with a known ordering
result for a specific value of this parameter, extends the known result to all parameter values.

First we recall a similar result from the continuous Fourier Extension. Let Ā be the matrix of the
continuous FE (2.5) with eigenvalues �̄

i

, and Z̄
N

the tridiagonal matrix (4.3) with eigenvalues ✓̄
i

Z̄
N

=

2

66664

pc̄
0

b̄
1

b̄
1

c̄
1

. . .
. . .

. . . b̄
N�1

b̄
N�1

c̄
N�1

3

77775
, c̄

i

=

✓
N � 1

2
� i

◆
2

cos
⇡

T
, b̄

i

=
i(N � i)

2
. (4.3)
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Then the mapping Ḡ0

j = Ḡ0(i) ,
(
�̄0
i

Z̄
N

�̄
i

= ✓̄
j

�̄0
i

Ā�̄
i

= �̄
i

,

was proven to be monotone in [30, §4.1]. This result can be extended to the discrete FE case, since
the limits of the entries of A0A and Z

N,M

for large m can be written in terms of the corresponding
matrices of the continuous problem:

lim
m!1

(A0A)
ij

=
sin (i�j)⇡

T

⇡(i� j)
= Ā

ij

lim
m!1

b
k

=
⇡2k(N � k)

L2

=
2⇡2

L2

b̄
k

lim
m!1

c
k

= cos
⇡

T

 
2⇡2

L2

✓
N � 1

2
� k

◆
2

� 1

!
=

2⇡2

L2

c̄
k

� cos
⇡

T

lim
m!1

Z
M,N

=
2⇡2

L2

Z̄
N

� cos
⇡

T
I

The last line ensures that the eigenvalues of Z
M,N

are those of Z̄
N

under a linear mapping. Since this
mapping preserves the ordering of eigenvalues, the theorem holds in the limit m ! 1. Further, when
limited to the regime T > 1, 2m+ 1 � N , we have the following:

1. The tridiagonal matrix Z
M,N

(m) with diagonal elements c
k

and subdiagonal elements b
k

b
k

= sin

✓
⇡k

2Tm

◆
sin

✓
⇡(2m+ 1� k)

2Tm

◆

c
k

= � cos

✓
⇡(k �m)

Tm

◆
cos

✓
⇡N

2Tm

◆
.

commutes with A0A for integer values of m. However, by a substitution as in [10, Thm. 4.7],
it is easy to see that this relationship holds for any real m > n.

2. A classical result states that the eigenvalues of a matrix are continuous as the matrix entries
vary continuously in the parameter. Thus all ✓

i

(m) are continuous. In general they may
coincide with each other. However, since all subdiagonal entries are always non-zero,

81  k  N � 1 : b2
k

> 0,

Z
M,N

(m) is a so-called normal Jacobi matrix and such matrices are known to have distinct
eigenvalues [13, Ch. 2.1]. As a result of this distinctness, the eigenvectors can be chosen to be
continuous in m as well [20, Ch. 2 §5.3].

3. To prove similar statements for the matrix A0A, we note that the inductive proof in [33,
Prop. 5] for the distinctness of eigenvalues of A0A is dependent only on it being symmetric,
and the commuting Z

M,N

(m) being a normal Jacobi matrix. The eigenvalues �
i

(m) are thus
continuous and distinct 8m � n. Then the eigenvectors can also be chosen continuous in m.

Combining these statements, the distinctness preserves the relative ordering of the continuous eigenval-
ues. The continuity of the eigenvectors relates the eigenvalues of A and Z

N,M

through the mapping G0.
Since this mapping is monotone in the limit m ! 1, the continuity ensures the mapping is monotone
for all m � n.

The required index set for the eigenvalues of Z
M,N

is exactly the index set corresponding to �
i

from the plunge region. From (vi) these are known to be centered around NM

L

, and their number
grows as O(logN). All that remains is to determine the constants C

min

and C
max

so that

�
j

2 I
�

, j 2

max

⇢
N � NM

L
� C

min

logN, 1

�
,min

⇢
N � NM

L
+ C

max

logN,N

��
.
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We denote the minimum and maximum indices as j
min

and j
max

. The minimum required index set
[j
min

, j
max

] with cuto↵ ⌧ = 1e� 16 for increasing N is shown in Figure 4.2, with the value N � NM

L

as
a dashed line. Experimentally, the choices C

min

� 6 and C
max

� 3 seem su�cient for all ⌧ � ✏
mach

.
The V

�

can be obtained by refining A0 ˆ�
M,N,i

as eigenvectors of Z
N,M

.
Using a fast tridiagonal eigenvector algorithm, U

�

, ⌃
�

and V
�

can be computed in O(N logN)
operations. The solution term

x
�

= V
�

⌃�1

�

U 0
�

b

is then found in O(N log2 N) operations.
Remark 2. Monotonicity of the map G

N,M

is also observed to hold for integer M smaller than
integer N . Specifically, a variant of Theorem 1 holds for the M nonzero singular values �

i

. The same
index set can thus be used to compute both U

�

and V
�

with a fast tridiagonal eigenvalue algorithm.
However, this altered algorithm is without proof.

0 50 100 150 200 250 300 350
0

200

400

N

[j
m
i
n

,j
m
a
x

]

T=4/3
T=2
T=10/3

Fig. 4.2: The behaviour of the index set of the plunge region. The minimal and maximal index of the
plunge region are shown as solid lines, for di↵erent values of T . The point NM/L, which is known to
lie in the interval, is shown as a dashed line.

Combining x
�

with the calculation of x
↵

described above leads to a fast O(N log2 N) algorithm.
A bare-bones version incorporating remark 2 is given in Algorithm 1. The trideig function should
return eigenvectors of a tridiagonal matrix given an index interval, e.g. the lapack routine dstevx.

The matrix-vector multiplications with A and A0 should be implemented using a combination of
length L unitary FFTs F and F 0 and selection matrices D

M

and D
N

:

A = D
M

F 0D0
N

A0 = D
N

FD0
M

.

Here, D
N

selects the subset of frequencies that correspond to the Fourier series approximation from
the longer FFT, i.e., the 2N + 1 smallest frequencies. The matrix D

M

selects the function samples
that lie in the approximation interval from the equispaced samples on the extended interval. We have
used a symmetric embedding [�1, 1] 2 [�T, T ] in this paper, but other choices are possible. We refer
to the matlab implementation of these matrix-vector products in the appendix for the details of the
implementation.

4.2. Approach 2: an implicit projection method. The second approach to calculating x
�

is
more universal, or more generally applicable, since it depends solely on the steep singular value profile
discussed earlier and illustrated in Fig. 4.1. As such, it is extensible to any ill-conditioned basis that
exhibits a similar profile.
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Algorithm 1 Explicit projection on DPSSs

U
�

=trideig(Z
M,N

, {j
min

, j
max

})
V
�

=trideig(Z
N,M

, {j
min

, j
max

})
⌃

�

= (U 0
�

AV
�

) > ⌧

x
�

= V
�

⌃�1

�

U 0
�

b
x
↵

= A0(b�Ax
�

)
x = x

↵

+ x
�

The approach is based on the observation that multiplying both the FE matrix A and right hand
side by a factor

P = (AA0 � I) (4.4)

isolates the problem to the plunge region. This is most easily seen from the SVD. With A = U⌃V 0 we
have

P = U(⌃2 � I)U 0, (4.5)

and

PA = U(⌃3 � ⌃)V 0.

Note here that the mapping

P(�) = �3 � �

isolates the singular values from the plunge region since 8� 2 {I
↵

[ I
�

} : P(�) = O(⌧). This way, PA
preserves the singular vectors of just the plunge region, but with mapped singular values

PA = U
�

(⌃3

�

� ⌃
�

)V 0
�

+O(⌧). (4.6)

In theory, P is a square full rank matrix, and solving

PAx = Pb (4.7)

is equivalent to solving Ax = b. In practice, PA has a large numerical nullspace. Hence, PA is
approximately low rank, with the rank increasing with the size of the plunge region. The combination
of this low rank with a fast matrix-vector product allows random matrix algorithms to solve (4.7) very
e�ciently.

Assume W a uniform random matrix of dimensions N⇥R, where R = C logN+D is a conservative
estimate for the rank of PA. From the previous section, C = C

min

+C
max

� 9 is su�cient, with D ⇠ 10
minimizing the chance of failure of the random matrix algorithm. The column space of PAW then
approximates the column space of PA very well.

Therefore, solving the following small linear system

PAWy = Pb

and letting

x
W

= Wy

one obtains a solution to (4.7) a cost of O(MR2). It follows from (4.5) and (4.6) that x
�

is recov-
ered exactly. On the other hand, this solution process introduces additional solution terms from the
nullspace of PA. Write x

W

as x
�

+ r
↵

+ r
�

. Then as before we calculate

A0(b�Ax
W

) = A0(b
↵

�Ar
↵

�Ar
�

) +O(⌧)

= x
↵

� r
↵

� V
�

⌃2

�

V 0
�

r
�

+O(⌧)

= x
↵

� r
↵

+O(⌧).
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Then x = x
W

+A0(b�Ax
W

) boils down to

x = x
↵

+ x
�

+ r
�

+O(⌧).

so that ||Ax � b|| = O(⌧). The total cost of this algorithm is again O(N log2 N) operations. A step
by step version is given in Algorithm 2. To illustrate the simplicity of the algorithm, a matlab

implementation is provided in Appendix, where the main computations comprise fewer than 10 lines
of code.

Algorithm 2 Implicit projection on DPSSs

PAWy = Pb
x
�

= Wy
x
↵

= A0(b�Ax
�

)
x = x

↵

+ x
�

4.3. Adaptation for the continuous FE. As mentioned in section 3.3, the continuous FE also
has numerous connections with Prolate Spheroidal Wave theory. The solution is most easily expressed
in terms of the eigenvectors of Ā, the DPSSs

Ā =  ⇤ .

The eigenvalues �
i

have a similar profile to that of Figure 4.1. Our second approach thus applies
immediately, and Algorithm 2 is well suited to solve the continuous FE problem. Note however that
this does not eliminate the theoretical O(

p
⌧) error bound.

Furthermore, these DPSS also satisfy a second order di↵erence equation, di↵erent from (3.10). In
particular, the matrix Ā commutes with the tridiagonal matrix (4.3).

It follows that, with minor modifications, Algorithm 1 can also be used to solve the continuous
FE problem.

5. Numerical Results. In this section we apply the algorithms from the previous section to a
number of test problems. All tests were performed in matlab , single threaded. The required fast
matrix-vector products Ax and A0y were implemented using ↵ts, and the lapack routine dstevx was
used for the tridiagonal eigenvalue problem.

To show the validity of our algorithms for di↵erent values of T , experiments are carried out for

T
1

= 1.1, T
2

= 2, T
3

= 3.8.

Following [3], the product L = 2T�n is held constant when varying T in order to maintain a fixed
condition number. This means the oversampling � = M/N varies between experiments. For our values
of T we use

M
1

⇡ 4

1.1
N, M

2

,= 2N M
3

⇡ 4

3.8
N,

rounded to odd M .

5.1. Computational complexity. Figure 5.1a shows execution time for increasing degrees of
freedom of the algorithm for di↵erent values of T . The figure confirms the theorized O(N log2 N)
asymptotic complexity of our algorithms. It also shows execution speed is on par with the current
fast algorithm by Lyon. Also, as in Lyons algorithm, the majority of the work is in computing a
low-rank matrix decomposition related to A, in this case the middle part of the SVD. This can provide
a significant speedup when multiple approximations are needed with the same parameters.

Figure 5.1b compares our two approaches in more detail. The figure shows the execution time per
degree of freedom. The di↵erence between algorithms is very much dependent on implementation, but
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it highlights a trend seen for di↵erent values of T . Both algorithms appear to be slightly faster for
larger T , which is somewhat counterintuitive. After all, the cost of the FFT operations is O(L), which
is held constant for all experiments. However, both approaches solve a subproblem with a cost that
grows as O(M). This is either the tridiagonal eigenvalue problem with a matrix of size M ⇥M , or a
linear solve of an M ⇥ logM system. Due to our scaling of M , these costs actually decrease with T .
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(a) Algorithm timings
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(b) Timings per degree of freedom

Fig. 5.1: Execution time for increasing degrees of freedom N , for MATLAB implementations of the
Explicit and Implicit projection algorithms, the Lyon algorithm and a direct solver.

5.2. Convergence. The accuracy of the solution obtained through our algorithms is shown in
Figures 5.2a through 5.2d. The accuracy is measured as the maximum pointwise error over an equi-
sampled grid ten times denser than the one used for construction. This is measured for increasing
number of degrees of freedom N for four test functions:

• A well-behaved, smooth function to show convergence in near optimal conditions,

f
1

(x) = x2.

• A highly oscillatory function, to show the resolution power of Fourier extensions for oscillatory
functions,

f
2

(x) = Ai(76x).

• A function with a pole in the complex plane near the real interval [�1, 1], to show convergence
at a slower, but still exponential rate,

f
3

(x) =
1

1.1� x2

.

• A function with discontinuous first derivative, to see the breakdown of the algorithm to alge-
braic convergence speeds,

f
4

(x) = |x|.
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The convergence behaviour seen is in accordance with [18], [2] and [3]. For T = 2, it also very
closely agrees with the Lyon algorithm and the direct solver. Convergence for functions analytic in
[�1, 1] is at least geometric, even when singularities are present near the real interval. Following the
earlier arguments about resolution power from §2.3, Fourier extensions of oscillatory functions start to
converge sooner for lower values of T . Note that this is in terms of degrees of freedom, and that we
increased the oversampling for lower T to maintain conditioning.

When the approximant is in Ck, having continuous derivatives up to f (k), the convergence rate
becomes algebraic at a rate of O(N�k+1). The convergence of order O(N�1) for the C0 function is
apparent from Figure 5.2d.
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Fig. 5.2: The L1 norm of the error, computed by oversampling the solution by a factor 10, for the
various testfunctions

5.3. Robustness. To ensure there is no accumulation of error for very large N , Figure 5.3a shows
the continuation of an accuracy experiment for N up to 105. No error accumulation is visible, the
error fluctuates around the cuto↵ threshold.

Figure 5.3b shows the challenging problem of approximating an oscillatory function with a fre-
quency that increases with N , f(x) = sin(Nx). The error for the Algorithm using T = 1.1 and T = 2
stays close to machine precision, if maybe slightly increasing. However, for T = 3.8, the maximum
frequency in the Fourier basis is lower than the frequency of the signal for every N , so there cannot be
any convergence. This experiment shows that even a very oscillatory signal such as f(x) = sin(105x)
can be accurately approximated, as long as there are su�cient degrees of freedom for the chosen value
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of T .
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Fig. 5.3: Illustration of the robustness of FE approximations for large N .

6. Conclusion. In this paper, we have studied the relation between Fourier extensions and a
problem from signal processing called bandlimited extrapolation. The solutions to both of these
problems can be written in terms of Prolate Spheroidal Wave functions, or any of their discrete variants.
Through this connection, the peculiar properties of these Prolate Spheroidal Wave functions can be
used as a foundation for fast algorithms to compute Fourier extensions.

Two algorithms were presented, one based on the property that discretised Prolate functions satisfy
a second order di↵erence equation, one based on the property that these functions have a particular
distribution of singular values. Of these two algorithms, the first has a slight advantage in speed and
accuracy. However, the second algorithm is only dependent on the singular value distribution, making
it more robust to generalizations. It is also quicker and more straightforward to implement.

The merits of these algorithms lie in facilitating the use of schemes with flexible extension length,
whether this is dictated by the application, or gives optimal results for the end-user. Furthermore,
the solution methods are functionally equivalent to the truncated SVD method, so previous theory on
that solution method still applies. Lastly, the connection with Prolate Spheroidal Wave Theory and
the associated projection method paves the way for a number of possible generalizations.
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MATLAB code 1 A full matlab implementation of the implicit algorithm.

1 f unc t i on s o l = f a s t f e ( f , n ,T,m)
2 % Constants
3 b=f ((�m:m)/m) ’ ;
4 L=round (T⇤2⇤m) ;
5 C=min ( c e i l (8⇤ l og (2⇤n+1) )+10 ,2⇤n) ;
6

7 % Fast matrix ope ra t i on s
8 fA=@(x ) fast mv A (x , n , L ,m) ;
9 fAT=@(x ) fas t mv A transpose (x , n , L ,m) ;

10 P=@(y ) fA (fAT(y ) )�y ;
11

12 % I s o l a t i n g the middle s i n gu l a r va lue s
13 R=2⇤rand (2⇤n+1,C)�1+2 i ⇤ rand (2⇤n+1,C)�1 i ;
14 [U, S ,V]=svd (P( fA (R) ) ,0 ) ;
15 pinvS=diag ( 1 . / diag (S) ) ;
16 y=V⇤( pinvS ⇤(U’ ⇤ (P(b) ) ) ) ;
17 x1=R⇤y ;
18

19 % Remaining computation
20 b1=fA ( x1 ) ;
21 b2=b�b1 ;
22 x2=fAT(b2 ) ;
23 s o l=(x1+x2 ) ⇤ s q r t (1/m) ;
24 end
25

26 % Fast matrix vec to r product
27 f unc t i on z = fast mv A (y , n , L , m)
28 w = [ y (n+1:2⇤n+1 , : ) ; z e r o s (L�(2⇤n+1) , s i z e (y , 2 ) ) ; y ( 1 : n , : ) ] ;
29 v = L⇤ i f f t (w) ;
30 z = 1/ sq r t (L) ⇤v ( [ end�m+1:end 1 :m+1 ] , : ) ;
31 end
32

33 % Fast matrix vec to r product ( t ranspose )
34 f unc t i on z = fas t mv A transpose (y , n , L , m)
35 w = [ y (m+1:2⇤m+1 , :) ; z e r o s (L�(2⇤m+1) , s i z e (y , 2 ) ) ; y ( 1 :m, : ) ] ;
36 v = f f t (w) ;
37 z = 1/ sq r t (L) ⇤v ( [ end�n+1:end 1 : n+1 ] , : ) ;
38 end
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