



# **Frames and Numerical Approximation**

Ben Adcock<sup>1</sup>, Vinvent Coppé<sup>2</sup>, Daan Huybrechs<sup>2</sup>, Roel Matthysen<sup>2</sup>, and Marcus Webb<sup>2</sup> <sup>1</sup>Simon Fraser University, Canada, <sup>2</sup>KU Leuven, Belgium ⊠ daan.huybrechs@cs.kuleuven.be

## Frames

**Definition:** In a Hilbert space  $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ , a set  $\Phi = \{\phi_k : k \in I\} \subset \mathcal{H}$  is a frame if there exists *frame constants*  $0 < A \leq B < \infty$  such that

$$A||f||^2 \le \sum_{k \in I} |\langle f, \phi_k \rangle|^2 \le B||f||^2, \qquad \forall f \in \mathcal{H}.$$

**Equivalently:** the *pre-frame operator*,

 $\mathcal{T}: \mathbf{c} \mapsto \sum c_k \phi_k$ 

## Stable computation

Since computation of  $P_N f$  is in general practically impossible, we instead compute the  $\varepsilon$ -truncation,

$$\mathcal{P}_N^{\varepsilon} f = \sum_{\sigma_k > \varepsilon} \frac{\langle \phi_k, f \rangle}{\sigma_k} \phi_k, \qquad \sigma(G_N) = \{\sigma_1, \dots, \sigma_N\}.$$

For even greater stability, an  $M \times N$  system can be solved ( $M \ge N$ , so solved in the least squares sense),  $G_{M,N}x = b$ , where

 $k \in I$ 

#### is bounded and onto as a linear operator from $\ell^2(I)$ to $\mathcal{H}$ .

**Benefits:** A frame generalises an orthonormal basis, but the set  $\Phi$  does not need to be linearly independent. This gives us *more freedom* in defining a frame for the purposes of numerical approximation.

Challenges: The redundancy of a frame can lead to extremely ill-conditioned linear systems, but despite this, stable and fast algorithms are possible if we proceed with care.

# **Examples of frames**

**Fourier extensions:** For a domain  $\Omega \subset \Gamma$ , where  $\Gamma = [-1, 1]^d$  or some other bounding box, use the functions which are the Fourier series on  $\Gamma$ , but restricted to  $\Omega$ :

 $\Phi = \{ \exp(i\pi \mathbf{k} \cdot \mathbf{x}) : \mathbf{k} \in \mathbb{Z}^d \} \subset L^2(\Omega).$ 

Particularly powerful if  $\Omega$  has complicated geometry.





$$(G_{M,N})_{k,j} = \langle \phi_k, \phi_j \rangle,$$

$$\mathcal{P}_{M,N}^{\varepsilon}f = \sum_{\sigma_k > \varepsilon} \frac{\langle \phi_k, f \rangle}{\sigma_k} \phi_k, \qquad s(G_{M,N}) = \{\sigma_1, \dots, \sigma_N\}.$$

# **Convergence of truncated projections**

**Theorem 1.** The truncated SVD projection  $\mathcal{P}_N^{\varepsilon}$  satisfies

 $||f - \mathcal{P}_N^{\varepsilon} f|| \le ||f - \mathcal{T}_N z|| + \sqrt{\varepsilon} ||z||, \qquad \forall z \in \mathbb{C}^N, f \in \mathcal{H}.$ 

Theorem 2. The oversampled, truncated SVD projection  $\mathcal{P}_{M,N}^{\varepsilon}$  satisfies

 $\limsup \|f - \mathcal{P}_{M,N}^{\varepsilon} f\| \le C(\|f - \mathcal{T}_N z\| + \varepsilon \|z\|), \qquad \forall z \in \mathbb{C}^N, f \in \mathcal{H}.$  $M \rightarrow \infty$ 

**Important property:** These two theorems show that the computation is stable if there exists some vector of coefficients z which gives a good approximation of f and such that ||z|| is small.

## A fast algorithm for Fourier extensions

**The plunge region:** For Fourier extensions,  $G_{M,N}$  has a distinctive spectrum with three parts: (i) O(N) singular values are close to 1, corresponding to functions concentrated in the interior of  $\Omega$ . (ii) A plunge region where  $1 - \varepsilon > \sigma > \varepsilon$ , corresponding to the boundary. This grows as o(N). (iii) The region where  $\sigma \leq \varepsilon$ , these are truncated.

Augmented Fourier basis: add a finite number of polynomials to the Fourier basis:

 $\Phi = \{ \exp(i\pi kx) : k \in \mathbb{Z} \} \cup \{ P_1(x), P_2(x), \dots, P_d(x) \}.$ 

This can reduce the Gibbs phenomenon for nonperiodic functions.

**Polynomial plus modified polynomials:** Take a polynomial basis plus w(x) times polynomial basis:

 $\Phi = \{ P_0(x), P_1(x), \ldots \} \cup \{ w(x) P_0(x), w(x) P_1(x), \ldots \}.$ 

The weight function w can be complex, and may be singular, oscillatory or possess some other feature which makes classical approximation difficult.

# **Best approximation**

Given a frame  $\Phi$  and a finite subset  $\Phi_N$ , compute the orthogonal projection  $\mathcal{P}_N f$  of f onto  $\mathcal{H}_N = \operatorname{span}(\Phi_N)$ .

This can be done by solving the linear system,  $G_N x = b$ , where



 $\sigma \sim 1 - \varepsilon$ 

 $\sigma \sim \varepsilon$ 

**Fast Algorithm:** The related matrix  $(I - G_{M,N}G^*_{M,N})G_{M,N}$  isolates the plunge region. This *low-rank* problem can be solved using a fast randomized SVD algorithm. What remains vanishes at the boundary and is solved through regular FFTs.

 $(G_N)_{k,j} = \langle \phi_k, \phi_j \rangle, \qquad b_k = \langle \phi_k, f \rangle.$ 

$$\mathcal{P}_N f = \sum_{\sigma_k > 0} \frac{\langle \phi_k, f \rangle}{\sigma_k} \phi_k, \qquad \sigma(G_N) = \{\sigma_1, \dots, \sigma_N\}.$$

If  $\Phi$  is an orthonormal basis, this is trivial, since  $G_N = I_N$ . In general, however,  $G_N$ can be arbitrarily badly conditioned. Furthermore, the solution's norm  $||x||_2$  can grow arbitrarily rapidly as N increases.

This means that in general, it is effectively impossible to compute the best approximation.

#### References

[1] Adcock B., Huybrechs D., *Frames and numerical approximation*, arXiv:1612.04464 [2] Matthysen R., Huybrechs D., Fast Algorithms for the computation of Fourier Extensions of arbitrary length, SIAM J. Sci. Comput., Vol. 36, No. 2. 2015 [3] Matthysen R., Huybrechs D., Function approximation on arbitrary domains using Fourier extension frames, arXiv [4] Webb M., *The plunge region in frame-based approximation* (in prep.)

[5] Coppé V., Huybrechs D., Webb M., *Convergence of univariate Fourier extensions* (in prep.)



Department of Computer Science Celestijnenlaan 200A bus 2402



