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Definition: In a Hilbert space (H,(:,:)), aset ® = {¢r : £k € I} C H is a frame if
there exists frame constants 0 < A < B < oo such that
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Equivalently: the pre-frame operator,
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is bounded and onto as a linear operator from ¢%(I) to H.

Benefits: A frame generalises an orthonormal basis, but the set ® does not need to be
linearly independent. This gives us more freedom in defining a frame for the purposes
of numerical approximation.

Challenges: The redundancy of a frame can lead to extremely ill-conditioned linear
systems, but despite this, stable and fast algorithms are possible if we proceed with
care.

Examples of frames

Fourier extensions: For a domain Q C I', where I = [—1, 1]¢ or some other
bounding box, use the functions which are the Fourier series on I', but restricted to 2:

® = {exp(irk - x) : k € Z%} C L*(Q).

Particularly powerful if 2 has complicated geometry.

Augmented Fourier basis: add a finite number of polynomials to the Fourier basis:
¢ = {exp(inkx) : k € Z} U{Pi(x), Po(x),..., Piy(x)}.

This can reduce the Gibbs phenomenon for nonperiodic functions.

Polynomial plus modified polynomials: Take a polynomial basis plus w(x) times
polynomial basis:

¢ ={Py(x), Pi(x),...} U{lw(x)Py(x), w(x)Pi(x),...}.

The weight function w can be complex, and may be singular, oscillatory or possess
some other feature which makes classical approximation difficult.

Best approximation

m Given a frame ® and a finite subset ® 5, compute the orthogonal projection Py f of f
onto Hy = span(®y).

m This can be done by solving the linear system, Gyx = b, where

(GN)k,j = (P, D5), b = (Pk, f)-

Puf= Y g oGw = (o1 on)

or >0

m If ® is an orthonormal basis, this is trivial, since Gy = Iy. In general, however, Gy
can be arbitrarily badly conditioned. Furthermore, the solution’s norm ||x||s can grow
arbitrarily rapidly as N increases.

m This means that in general, it is effectively impossible to compute the best approxima-
tion.

KU Leuven

Department of Computer Science

Celestijnenlaan 200A bus 2402
3001 Leuven, Belgium

Stable computation

Since computation of Py f is in general practically impossible, we instead compute the
e-truncation,

Pyf= ) <¢§;f> Dk

O >¢€

o(Gny)={0o1,...,0N}.

For even greater stability, an M x N system can be solved (M > N, so solved in the
least squares sense), G vx = b, where

(GmN kg = (DK, D),

Punf = Z <gb§;f> Pk

O >€

S(GM,N) o {0'1, .. ,O‘N}.

Convergence of truncated projections

Theorem 1. The truncated SVD projection P%; satisfies

If = PR fI < N = Tzl + vellz],

Theorem 2. The oversampled, truncated SVD projection Py, \ satisties

Vze CN, f € A.

limsup ||f — Py v fIl < C(If = Twzll +ell2l),  Vz2eCV, feH.

M — o0

Important property: These two theorems show that the computation is stable if
there exists some vector of coefficients z which gives a good approximation of f and
such that ||z|| is small.

A fast algorithm for Fourier extensions

The plunge region: For Fourier extensions, G'j; v has a distinctive spectrum with
three parts: (i) O(NN) singular values are close to 1, corresponding to functions
concentrated in the interior of €. (ii) A plunge region where 1 — & > o > ¢,
corresponding to the boundary. This grows as o(/N). (iii) The region where o < ¢,
these are truncated.

Fast Algorithm: The related matrix (I — GM,NG}"%N)GM,N isolates the plunge
region. This low-rank problem can be solved using a fast randomized SVD algorithm.
What remains vanishes at the boundary and is solved through regular FFTs.
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