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Abstract

Function approximation is a basic building block in numerical analysis. A general
function may hide much of its properties, by being only available through point
evaluations or indirect measurements. However, for certain families of functions
such as polynomials or trigonometric functions much more is known: explicit
integrals and derivatives, symmetries, efficient discrete representations etc. The
goal of this thesis is to come up with combinations of such known functions
that approximate a given function very well, so the approximation is a very
flexible mathematical object.

Many approximation schemes can be iteratively refined, by increasing the degrees
of freedom, the number of functions used in the approximation. As the scheme is
refined, we look for convergence, and minimal complexity. The convergence rate
expresses the improvement in accuracy with increasing degrees of freedom. Fast
convergence is not achievable for all functions, leading to convergence results
for different classes of functions. On the other hand, the complexity expresses
the computational costs involved. We want the cost to scale reasonably with
the degrees of freedom.

This thesis focuses on computing approximations that are capable of yielding
very high accuracy very quickly. Specifically, we cover approximation of
functions in a frame, which is an extension of the concept of an orthonormal
basis. Orthonormal bases are very convenient choices for the function family,
and much effort has been put into efficient schemes using them to compute
approximations. Frames on the other hand are a more recent development. Their
use in approximation problems is therefore relatively new. The main advantage
compared to orthonormal bases is the flexibility: there are many problems
where an orthonormal basis is hard to find, or has suboptimal properties, but
where a suitable frame can easily be constructed.

The main contributions in this thesis are useful algorithms to compute
frame approximations, for classes of frames satisfying a condition on the
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iv ABSTRACT

spectrum of their evaluation operator. We formulate algorithms, both one-
and multidimensional, to compute good approximations in the frame in a
least squares sense. These improve upon the complexity of straightforward
least squares implementations. We also explain how these algorithms can be a
building block for more general problems involving least squares approximations,
including boundary value problems and approximations in more general frames.
We briefly describe the design choices involved in implementing these algorithms,
implementations that are available as an open source Julia package. We end
with an overview of current research topics in numerical frame approximations
that relate to the algorithms in this thesis.



Beknopte samenvatting

Het benaderen van functies is een fundamenteel onderdeel van de numerieke
analyse. De eigenschappen van een generieke functie zijn vaak moeilijk te
doorgronden indien de functie enkel geobserveerd kan worden in discrete punten
of door indirecte metingen. Daartegenover staan families van functies zoals
veeltermen of trigonometrische functies die al eeuwenlang bestudeerd worden
en waarvan de integralen, afgeleiden, symmetrieën, efficiënte transformaties etc.
gekend zijn. Het doel van deze thesis is om een gegeven functie te benaderen
met elementen uit zo een familie, zodat de resulterende benadering een flexibel
wiskundig object is met gekende eigenschappen.

Veel benaderingsschema’s kunnen iteratief verfijnd worden door het aantal
vrijheidsgraden op te voeren, het aantal functies dat gebruikt wordt in de
benadering. Bij een stijgend aantal vrijheidsgraden verwachten we dat de
fout daalt, en dat de rekenkost voor het algoritme waarmee we de benadering
berekenen binnen de perken blijft. De snelheid waarmee de benaderingsfout
daalt hangt af van de gegeven functie, deze is kwalitatief verschillend voor
verschillende klassen van functies.

Deze thesis gaat over benaderingsschema’s die zeer snel zeer nauwkeurige
benaderingen kunnen berekenen. Meer specifiek bestaat de familie van functies
waaruit we elementen gebruiken uit een frame, een generalisatie van een
orthonormale basis. Orthonormale basissen zijn klassieke en zeer goede keuzes
voor benaderingsproblemen, met een lange geschiedenis van theoretische en
praktische resultaten. Frames zijn een recentere ontwikkeling, en relatief
onbekend in benaderingsproblemen. Hun grote voordeel ten opzichte van
orthonormale basissen zijn de flexibiliteit: er zijn problemen waarvoor een
orthonormale basis zeer moeilijk te vinden is, of onbruikbaar is in algoritmes,
terwijl een frame voor hetzelfde probleem eenvoudig te vinden is.

De voornaamste bijdragen van deze thesis zijn bruikbare algoritmes om
benaderingen in frames te berekenen, voor frames waarvan het spectrum van de
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evaluatiematrix voldoet aan bepaalde voorwaarden. We formuleren algoritmes in
één en meerdere dimensies om benaderingen met een kleine kleinste kwadraten
fout te berekenen. Deze algoritmes hebben een fundamenteel lagere rekenkost
dan een voor de hand liggende aanpak. Daarnaast brengen we een aantal
problemen aan waarvoor deze algoritmes een bouwsteen kunnen vormen, zoals
randwaardeproblemen, en ruimere klassen frames. We beschrijven kort de
genomen ontwerpbeslissingen bij het implementeren van deze algoritmes, deze
zijn vrij verkrijgbaar als een open source julia pakket. We eindigen met een
overzicht van toekomstig werk en openstaande problemen gerelateerd aan deze
thesis.
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Chapter 1

Introduction

The central problem of this thesis is the approximation of functions in a frame.
In order to understand frames as a generalisation of orthonormal bases we recall
the most important approximation properties regarding these bases. Then we
present some examples of frames like the Fourier extension frame and augmented
frames, and why they are the natural choice in some situations. We also cover the
most important recent results in frame approximation theory, most importantly
regarding regularised projections. These provide error estimates based on the
existence of a good approximation in the frame, serving as a motivation for using
frames. We will cover the efficient computation of these regularised projections
in Chapters 3 and 4, for the classes of frames described in Chapter 2.

Throughout this chapter, the different types of bases and frames are
illustrated with simple examples. Through these examples, the most important
characteristics of the different approximations are easily shown: accuracy and
convergence speed, computational complexity, and flexibility. By no means
do these examples cover this diverse topic, but they serve to contextualise the
frame approximations.

To keep this chapter concise, theorems and statements are provided without
proof. The classical results are found in textbooks on approximation or spectral
methods such as [100, 10], and books on frame theory [26, 25], where most
of the frame-specific notation and definitions originate. Near the end of the
chapter the approximation properties of frames are the result of more recent
work [1, 3].

1
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1.1 Function Approximation

The functions we approximate are mappings of the form

f : Ω→ C,

where Ω ∈ Rd, a mapping that takes elements of d-dimensional Euclidean space
to complex numbers. We assume f is in some normed linear vector space V with
norm ‖ · ‖ : V → R+. For an approximation f̃ , we seek to minimise ‖f − f̃‖.

If the vector space V has an inner product 〈·, ·〉 : V × V → C, and is complete
with respect to the induced distance metric, it is called a Hilbert space, denoted
by H. This inner product is conjugate symmetric, linear in the first element
and the inner product of an element with itself is positive. This last property
induces the norm ‖f‖2 = 〈f, f〉.

The starting point of our approximations is the representation of f by a linear
combination of functions from an ordered function sequence {φi}∞i=1:

f(x) =
∞∑
i=1

ciφi(x) (1.1)

If for all f ∈ H coefficients ci exist so that ‖f −
∑∞
i=1 ciφi‖ = 0 we say

{φi}∞i=1 has the expansion property. This representation leads to the sequence
of approximations

fN (x) =
N∑
i=1

ciφi(x), N = 1, 2, . . . (1.2)

Because N coefficients can be chosen independently, the approximation fN is
said to have N degrees of freedom. This sequence is said to converge to f if

lim
N→∞

‖f − fN‖ = 0. (1.3)

Function sequences that have a unique approximation for every element of H
are called (Schauder) bases.

Definition 1.1. A sequence of functions {φi}∞i=1 in H is a Schauder basis for
H if, for each f ∈ H, there exist unique scalar coefficients {ci(f)}∞i=1 such that

f =
∞∑
i=1

ci(f)φi. (1.4)
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(1.4) should be understood as convergence as in (1.3). Note that this may depend
on the ordering of {φi}∞i=1. If convergence is unconditional, i. e. independent of
this ordering, {φi}∞i=1 is called an unconditional basis. In practice we truncate
(1.1) based on a series of index sets IN ⊂ IN+1 ⊂ . . . , with shorthand notation
{φi}IN = {φi}i∈IN . Convergence should be understood in this ordering.

The uniqueness of the coefficients requires some notion of independence of
{φi}∞i=1. A N -dimensional set {φi}IN is linearly independent if∑

i∈IN
ciφi = 0⇔ ci = 0 ∀i.

In infinite-dimensional spaces, there are different ways of defining independence.

Definition 1.2. If {φi}∞i=1 is a sequence in H, then

1. {φi}∞i=1 is linearly independent if every finite subset of {φi}∞i=1 is linearly
independent.

2. {φi}∞i=1 is ω-independent if
∑∞
i=1 ciφi = 0 implies ci = 0,∀i.

It is clear that for the coefficients ci in (1.1) to be unique, {φi}∞i=1 should
be both linearly and ω-independent. The distinction between these types of
independence will play an important role when defining frames in §1.4.

In practice, the function set is finite, and we look at the successive truncations
of {φi}∞i=1 to N elements. If {φi}∞i=1 is a linearly independent basis, every
truncation is a linearly independent basis for its span; denote span by HN =
span({φi}IN ). The best approximation to f in HN exists and is uniquely defined
by the orthogonal projection of f on HN .

Definition 1.3. Let H be some Hilbert space, and HN be a complete linear
subspace. Then PN is an orthogonal projection onto HN if and only if for all
f, g ∈ H,

〈PNf, g〉 = 〈PNf,PNg〉 = 〈f,PNg〉.

So far, we have established that (1.1) has a unique solution if {φi}∞i=1 is a basis,
and that for such a basis the best approximation (1.2) in a subspace is given
by the orthogonal projection onto that subspace. However, it remains unclear
how to choose {φi}∞i=1, and how to compute the successive approximations.
The following sections give concrete examples of {φi}∞i=1 and accompanying
constructions for PNf .

Before continuing, we mention the two most common Hilbert spaces throughout
this chapter. First, the space of square integrable functions on Ω:



4 INTRODUCTION

Definition 1.4. L2
Ω contains all functions f for which∫

Ω
|f(x)|2dx <∞,

with inner product
〈f, g〉 =

∫
Ω
f(x)g(x)dx.

Second, the closely related space of square integrable sequences.

Definition 1.5. `2 contains all sequences {ck}∞k=1 for which
∞∑
k=1
|ck|2 <∞, (1.5)

with inner product

〈c, d〉 =
∞∑
k=1

ckdk.

Unless specified otherwise, 〈·, ·, 〉 and ‖ · ‖ should be understood as this inner
product and norm for functions and sequences respectively.

1.2 Orthonormal Bases

Projecting an element of H onto a sequence of spaces spanned by basis elements
is substantially easier if the basis has orthogonal elements.

Definition 1.6. A basis sequence {φi}∞i=1 is orthonormal if

〈φi, φj〉 = δij , i, j = 1, . . . ,∞

with δij = 1 if i = j and 0 otherwise.

If a Hilbert space has a countable orthonormal basis, like L2 and `2, it is called
separable. For an orthonormal basis

f =
∞∑
i=1
〈f, φi〉φi.

PNf =
∑
i∈IN
〈f, φi〉φi(x).
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To see this, note that

〈f, φi〉 = 〈PNf, φi〉 ∀i ∈ IN .

Then
〈PNf, φj〉 =

∑
i∈IN

ci〈φi, φj〉 = ci ∀i ∈ IN .

The norm of the coefficients ci = 〈f, φi〉 is related to the norm of f through the
Parseval identity

∀f ∈ H :
∑
|〈f, φi〉|2 = ‖f‖2. (1.6)

Now define the analysis operator for an orthonormal basis {φi}∞i=1 as

T ∗ : f → {〈f, φi〉}. (1.7)

Through Parseval’s identity this operator is an isometric isomorphism from L2

to `2. The adjoint operator is called the synthesis operator:

T : {ci} →
∑

ciφi, (1.8)

an isometric isomorphism from `2 to L2. Their composition T T ∗ is the identity
operator I. More generally, an orthonormal basis for a Hilbert space can always
be identified with `2, and as such all orthonormal bases for H are equivalent up
to unitary transformation [25, Theorem 3.2.7]. In what follows the analysis and
synthesis operators for HN are denoted by T ∗N and TN respectively.

A classical result sometimes attributed to Riesz and Fischer states that for
an orthonormal basis ‖f − PNf‖ converges as N → ∞. Equivalently, for
every ε > 0 there exists an N so that ‖f − PNf‖ < ε. The speed of this
convergence for classes of f is an important measure for the effectiveness of an
approximation scheme. To discern between these we define three qualitatively
different convergence speeds

Definition 1.7. A sequence {sn}n∈N decays with order k if

sn = O(n−k), n� 1

Definition 1.8. A sequence {sn}n∈N decays superalgebraically if

∀k : sn = o(n−k), n� 1 (1.9)

Definition 1.9. A sequence {sn}n∈N decays exponentially if

sn = O(ecn) (1.10)

for some constant c.
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An example of superalgebraic decay that is not exponential is so-called root-
exponential decay, where

sn = O(ec
√
n).

An approximation is said to converge at a certain algebraic or exponential rate if
the residual ‖f−fN‖ decays at this rate. Due to the Parseval identity the decay
rate of the orthogonal projection is directly related to decay of the coefficients
ci.

‖f − PNf‖2 =
∑
i/∈IN
|ci|2

For example, if the coefficients for successive truncations decay exponentially,
then

‖f − PNf‖ ≤
√
C2
∑
i≥N

ρ2N

= C
ρN√
1− ρ2

.

Exponential convergence of coefficients thus directly implies exponential
convergence of PNf to f in the norm, at some rate. Algebraic decay of
coefficients with rate k similarly leads to algebraic convergence results at slightly
lower rates [10, Sec. 2.12]. More precisely, if the coefficients decay as O(n−k),
adding the tail of the expansion yields O(n−k+1) pointwise convergence and
O(n−k+1/2) convergence in the L2 norm.

Remark 1.10. We only very briefly touch upon the topic of convergence of
sequences in Hilbert spaces in this chapter, a subject that should be treated
with care. However, if the synthesis operator T for the sequence is a bounded
operator from `2 to L2, then {φi}∞i=1 is called a Bessel sequence. For a Bessel
sequence,

∑∞
k=1 ciφi converges unconditionally for all {ci} ∈ `2, i. e. independent

of any reordering [25, Corollary 3.1.5]. All orthonormal bases, Riesz bases and
frames are Bessel sequences.

The practical conclusion is that the orthogonal projection PN on HN can
be constructed by calculating the inner products 〈f, φi〉. These integrals can
sometimes be evaluated analytically, but are often approximated numerically.
We will return to this in §1.5. The next paragraphs will cover some often used
function sets {φi}∞i=1, illustrated in Fig. 1.1.
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Figure 1.1: {φi}i∈I5 for some frequently used bases.
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1.2.1 Fourier Series

A classical orthonormal basis for L2
[a,b], the square integrable functions on the

interval [a, b], is the Fourier basis

{φk}∞k=−∞, φk = e ik2πx
b−a

The resulting expansion is the Fourier series

f =
∞∑

k=−∞
f̂ [k]e ik2πx

b−a ,

where the coefficients are the inner products with the basis functions

f̂ [k] =
∫ b

a

f(x)e− ik2πx
b−a dx. (1.11)

Due to the basis set taking both positive and negative indices, we define the
index set as

IN =
{
−N−1

2 , . . . , N−1
2 for N odd

−N2 + 1, . . . , N2 for N even
. (1.12)

Figure 1.1 shows the equivalent representation in sines and cosines.

The convergence of Fourier series is dependent on the smoothness and periodicity
of the function f , and can be estimated through integration by parts. A classical
result states that if f is p− 1 times continuously differentiable, with the original
function and each derivative periodic on [a, b], and the derivative of order p is
of bounded variation on [a, b], then

|f̂ [k]| = O(|k|−p−1), k � 1 (1.13)

If f ∈ C∞ and periodic, the coefficients decay superalgebraically. For analytic
f , i. e. the Taylor series at each point in [a, b] converges at least in a small
neighborhood of that point, decay is exponential. The rate is determined by
the location of the singularities in the complex plane.

Theorem 1.11. [10, Theorem 5] Let zi be the singularities in the complex
plane of f , and denote by

ρ = min
i
| I(zi)|

the minimum distance of a singularity to the real line. Then

f̂ [k] = O(ρ−k).



ORTHONORMAL BASES 9

When f is not periodic on [a, b], the continuity requirements for (1.13) are
not fulfilled. The coefficients only converge as O(|k|−1). For example, for the
function f(x) = x on [−1, 1], some approximations are shown in Fig. 1.2. The
approximation converges pointwise almost everywhere, with the exception of
the discontinuity, where it converges to zero. However, the overshoot present in
the oscillations near the discontinuity does not decay. In fact

lim
N→∞

PNf(−1 + 1
N

) = −1− 2(̇0.089489872236 . . . ).

This persistent overshoot near discontinuous functions is known as the Gibbs
phenomenon [47, 43].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

0

1
f
P3f

P11f

P101f

Figure 1.2: Fourier series of f(x) = x for increasing degrees of freedom. The
occurrence of the Gibbs phenomenon means the peak of the oscillation near the
discontinuity never decreases in magnitude.

The requirement of periodicity makes the Fourier series and related methods
unsuitable for non-periodic problems if fast convergence is required.

1.2.2 Orthogonal polynomials

As variants of L2, we can look at the weighted spaces L2
[−1,1],ω. For these spaces

the inner product is taken with respect to some positive weight function ω(x):

〈f, g〉[−1,1],ω =
∫ 1

−1
f(x)g(x)ω(x)dx.

For each of these spaces, there exists a family of orthogonal polynomials. When
normalised these constitute an orthonormal basis for L2

[−1,1],ω. The orthogonal
polynomials resulting from ω(x) =

(√
1− x2−1) are the Chebyshev polynomials.
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Denote the Chebyshev polynomial of order k by Tk(x), and the expansion by

f(x) =
∞∑
k=0

ckTk(x).

Through the mapping
Tk(cos θ) = cos kθ (1.14)

a Chebyshev series is related to a Fourier cosine series. Unsurprisingly, the
convergence of the expansion is governed by similar principles.

Theorem 1.12. [100, Theorem 7.1] Let f, f ′, . . . , f (p−1) be absolutely continu-
ous for some p ≥ 1, and let f (p) be a function of bounded variation. Then

|ck| = O(k−p−1), k � 1. (1.15)

For analytic functions, the exponential decay rate is determined by the
singularities, where the distance is measured in terms of ellipses.

Theorem 1.13. [100, Theorem 8.1] If f is analytic and bounded in the
Bernstein ellipse with foci −1 and 1 with semimajor and semiminor axis lengths
summing to ρ, then

‖f − PNf‖ = O(ρ−N ), N →∞.

1.2.3 Higher dimensions and Tensor product bases

Consider Ω ⊂ Rd when d > 1. Although orthonormal bases necessarily exist for
any L2

Ω, they are generally not obvious. As an example, the eigenfunctions of
the Laplace operator ∆f = λf on Ω form an orthonormal basis for L2

Ω, though
they can be hard to compute with.

On the other hand, certain Ω’s do lend themselves to orthonormal bases,
when there is structure to be exploited. For example, when Ω is a square
[−1, 1]× [−1, 1], a tensor product basis

{(x, y)→ φi(x)φj(y)}, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

is orthonormal in L2
Ω if {φi}∞i=1 is an orthonormal basis for L2

[−1,1]. For some
other domains Ω bases are known explicitly, such as the spherical harmonics for
the n-sphere [7].
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1.3 Non-Orthogonal Bases

The previous sections have demonstrated the desirable properties of orthonormal
bases. Orthogonal projection simply follows from the definitions, and
convergence is in general only limited by the smoothness of the approximant.
Despite the advantages, this approach may not always be the best choice. For
example:

• The approximant might not be very smooth, or maybe even discontinuous.

• As in §1.2.3, an orthogonal basis {φi}∞i=1 might be hard to come up with
or compute with.

• The bases might need to satisfy additional requirements.

This section covers more general bases than the orthonormal ones. For these
bases the representation

f =
∑
〈f, φi〉φi (1.16)

may not hold in general. Define the analysis and synthesis operator as before.
If the basis is a Bessel sequence, the composition of T ∗ and T is a bounded
operator from `2 to `2. In matrix representation it is referred to as the Gram
matrix and given by

G = T ∗T = {〈φi, φj〉}∞i=1,j=1. (1.17)

Note that for f =
∑∞
i=1 ciφi,

G{ci}∞i=1 = {〈f, φj〉}∞j=1.

Thus, the operator G maps the coefficients to the inner product with the basis
functions. If this operator is invertible, inverting it is then a way of obtaining
the coefficients from {〈f, φk〉}∞k=1. Note that for orthonormal bases G is the
identity operator, leading immediately to (1.16). Two example non-orthogonal
bases are shown in Figs. 1.1c and 1.1d.

1.3.1 B-splines

Given a set of points xj ∈ [a, b] a possible representation is that of a polynomial
of degree n on each interval [xj−1, xj ]. By carefully choosing the coefficients,
continuity up to a certain degree k can be enforced at the knots so the resulting
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expansion is in Ck[a,b]. An example is the representation in B-splines

fN (x) =
N∑
j=1

cjBj,n(x).

When the knots are distinct, this expansion is continuous up to the derivative
of degree n− 1. The total degrees of freedom N is equal to the number of knots
plus the number of overlapping B-splines. The B-splines themselves are defined
through the Cox-de Boor recursion formula [28]:

Bi,0(x) :=
{

1 if xi ≤ x < xi+1

0 otherwise
(1.18)

Bi,k(x) := x− xi
xi+k − xi

Bi,k−1(x) + xi+k+1 − x
xi+k+1 − xi+1

Bi,k−1(x). (1.19)

Figure 1.1c shows the B-splines of degree 1 in equispaced nodes, which are
tent functions. The resulting approximation is a piecewise linear polynomial.
Localised bases such as this one have the property that 〈φi, φj〉 is zero for most
i 6= j. Thus the Gram operator (1.17) is an infinite but sparse matrix, a major
advantage when solving linear systems involving (truncations of) this matrix.

1.3.2 Radial Basis Functions

Radial basis functions [18] are defined based on a (1-dimensional) shape function
φ(r) and a collection of ‘centers’ xi:

φi(x) = φ(‖x− xi‖).

Well-known shape functions are the Gaussian φ(r) = e(εr)2 and the multiquadric
φ(r) =

√
1 + (εr)2. These all have a shape parameter ε, that influences the

width of the radial basis functions. There usually is a trade-off involving this
shape parameter between accuracy and conditioning of the related system. For
example, very narrow Gaussians are localised and lead to an approximately
sparse Gram matrix, but poor approximations away from the centers. On the
other hand, very wide Gaussians may have better approximations but are nearly
linearly dependent [39].

As with the piecewise polynomials, there is a lot of freedom in the location of
the centers. Figure 1.1d shows Gaussian radial basis functions on equispaced
centers in one dimension. Because the function depends only on the distance
metric, radial basis functions are easy to generalise to higher dimensions. Radial
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basis functions are known to be particularly efficient for domains without
boundaries, such as the sphere [41]. Therefore they are a popular choice in
weather forecasting and related applications for the earth surface [38].

1.3.3 Riesz Bases

In §1.3 we defined the Gram operator G : `2 → `2 : {ck} → {〈f, φk〉}∞k=1. Bases
for which G is invertible are called Riesz bases.

Definition 1.14. A function set {φi}∞i=1 is a Riesz basis for H if its span is
dense in H and the relaxed Parseval identity

A‖c‖2 ≤ ‖
∞∑
i=1

ciφi‖2 ≤ B‖c‖2, ∀c ∈ `2 (1.20)

holds for positive constants A and B.

The norm of the Gram inverse is given by the optimal lower Riesz bound
‖G−1‖ = A−1 [26, Proposition 3.6.8]. Note that the definition ensures the φi are
not linearly dependent or ω-dependent, since

∑∞
i=1 ciφi = 0 for some nonzero c

would imply A = 0. Furthermore, (1.20) implies that a Riesz basis is a Schauder
basis as in Definition 1.1, so the representation

f =
∑
i

ciφi(x)

is unique. For general bases, the orthogonal projection on a subspace HN results
from

〈f, φ〉 = 〈PNf, φ〉, ∀φ ∈ ΦN ,

reformulated using the gram operator as

G{ck}Nk=1 = {〈f, φk〉}Nk=1.

Finding the coefficients for the orthogonal projection thus corresponds to
inverting the truncated Gram matrix

GN = {Gi,j}, i, j = 1, . . . , N.

The difficulty of inverting here depends on the choice of basis.

It should be noted that any finite subset of a linearly independent set is a Riesz
basis for its span. In the examples of B-splines and radial basis functions above,
take AN as the optimal lower Riesz bound for {φi}IN . Since the basis functions
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are linearly independent, AN > 0 and GN is invertible. However, AN may be
arbitrarily small, unless {φi}∞i=1 forms a Riesz Basis with lower bound A, then
infAn := A [26, Proposition 6.1.2]. Put differently, the Riesz basis property
ensures some level of conditioning for the problem of finding the coefficients
from the inner products with the basis functions.

Considerable interest has been given to coherent systems arising from a
generating function ψ and a variable operator applied to it. Examples are
the translating operator, dilation operator and modulation operator

Taψ(x) = ψ(x− a),

Dbψ(x) = ψ(x/b)
√
|b|
−1
,

Ecψ(x) = ψ(x)ei2πcx.

Composing a generating function with modulation and translation leads to Gabor
systems {EcTaψ}a∈Sa,c∈Sc ; translation with dilation leads to wavelet systems
{TaDbψ}a∈Sa,c∈Sc . Much effort has been put into determining conditions on ψ
so that these systems are orthonormal. However, the conditions under which
these systems are Riesz bases or frames are much more general, leading to more
freedom in the choice of ψ and index sets. See [25, Chapters 9, 11] for more
in-depth discussions.

1.4 Frames

Frames, the main topic of this thesis, generalise the concept of a basis.
Introduced by Duffin and Schaeffer [33], they satisfy a generalised Parseval
identity, called the frame condition.

Definition 1.15. A sequence {φi}∞i=1 in H is a frame for H if there exists
constants A,B > 0 such that

A‖f‖2 ≤
∞∑
i=1
|〈f, φi〉|2 ≤ B‖f‖2, ∀f ∈ H. (1.21)

The optimal constants A,B so that (1.21) holds are called the frame bounds.
Note that every Riesz basis is a frame since (1.20) implies (1.21). However, the
reverse is not true. In particular the frame definition allows the existence of
infinite sequences c ∈ `2 for which

∑∞
i=1 ciφi = 0. The difference is that frames

can be ω-dependent.
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Subclassifications include tight frames, and exact frames. A frame is tight if for
the optimal frame bounds A = B. A frame for H is exact if it is no longer a
frame for this space when any one element is removed. A frame is exact if and
only if it is a Riesz basis [26, Theorem 5.5.4], so the term frame is mostly used
in the context of inexact frames.

The Gram operator is defined for frames as in (1.17), based on the analysis and
synthesis operators. Note that, as opposed to Riesz bases, a frame does not
guarantee an invertible Gram operator. In fact the spectrum of G consists of
{0} ∪ [A,B]. A related operator is the frame operator

S = T T ∗ : H → H, f →
∞∑
k=1
〈f, φk〉φk.

For an orthonormal basis SNf converges to f , SN = TNT ∗N , but for a Riesz
basis or frame this is not necessarily true. However, it is always possible to find
a so-called dual frame.

Definition 1.16. A frame {ψi}∞i=1 is a dual frame for {φi}∞i=1 if

f =
∞∑
k=1
〈f, ψi〉φi =

∞∑
k=1
〈f, φi〉ψi, ∀f ∈ H

By this definition, an orthonormal basis is its own dual. The dual frame is
unique if and only if the frame is a Riesz basis. For a general frame a unique
canonical dual frame {ψi}∞i=1 = S−1{φi}∞i=1 can be identified through inverting
the frame operator. Then

f =
∞∑
k=1
〈f,S−1φk〉φk

always converges. Inverting the frame operator can be cumbersome since it is
an infinite-dimensional operator. However, for a tight frame S = AI = BI,
a tight frame is self-dual up to a scaling. The canonical dual frame has the
additional property that it leads to the smallest `2-norm of the coefficients, out
of all possible dual frames.

So in fact, it is possible to get a converging sequence of approximations in a
general frame

fN =
N∑
k=1
〈f,S−1φk〉φk

by truncating the canonical dual frame expansion. Much of the frame research
has focused on either analytically identifying the canonical dual frame, or
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numerically inverting it [27, 19, 24, 23]. However, in general fN 6= PNf , so this
truncated expansion is not the best approximation in the subspaces HN . It may
even converge much slower, illustrated in §1.4.2 through the Fourier extension
frame. At the same time this is an example of a linearly independent frame
that is not a Riesz basis.

1.4.1 Regularizing orthogonal projections

The orthogonal projection on HN can be computed as before through the
truncated Gram matrix GN . In contrast to the frame operator SN = TNT ∗N ,
this is equivalent to the identity operator only if the frame is an orthonormal
system, so tightness is not sufficient.

The orthogonal projection coefficients c are determined by

GNc = {〈f, φi〉}IN . (1.22)

The right hand side {〈f, φi〉}IN is shortened to b in what follows for convenience.
The truncated Gram matrices are bounded by the upper frame bound, ‖GN‖ =
BN < B. However, the inverse ‖G−1

N ‖−1 = AN only has lower bound greater
than zero if the frame is a Riesz basis [1, Lemma 4.2], as in §1.3.3. This means
the truncated Gram matrix can be very ill-conditioned, a phenomenon that will
come up throughout the following chapters. Consequently, the exact orthogonal
projection may be difficult to compute. Indeed, it is possible to construct
functions f, ‖f‖ = 1 for which ‖c‖ in (1.22) grows as O(A−1

N ) [1, Proposition
5.1]. This growth can even be exponential, depending on the frame. A solution
is to regularise the solution ‖c‖ through the Singular Value Decomposition
(SVD)

GN = UΣV ∗,
where U and V are unitary and Σ = diag(σ1, . . . , σN ) is a diagonal matrix
containing the singular values in decreasing order of magnitude. The solution
to GNc = b is then given by c = V Σ−1U∗b. Given a tolerance τ , define the
Truncated Singular Value Decomposition (T-SVD) as

GτN = UΣτV ∗,

where Στ = diag(σ1, . . . , σnτ , 0, . . . ) with nτ defined by σnτ ≥ τ > σnτ+1. Then
define the regularised projection as

cτ = V Σ†τU∗b, (1.23)

PτNf =
∑
IN

cτi φi. (1.24)
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Here Σ†τ = diag(σ−1
1 , . . . , σ−1

nτ , 0, . . . ) is the pseudo-inverse of Στ . For this
truncated projection, the following convergence result holds

Theorem 1.17. [1, Theorem 5.3]

‖f − PτNf‖ ≤ ‖f − TNz‖+
√
τ‖z‖, ∀z ∈ CN , f ∈ H. (1.25)

For the orthogonal projection Pf the bound ‖f −Pf‖ ≤ ‖f −TNz‖ necessarily
holds for all z ∈ CN . The convergence of the truncated projection to the best
approximation is thus dependent on the existence of good approximations with
small coefficient norm ‖z‖. However, the achievable precision guaranteed by
the theorem is bounded. If τ = εmach, only

√
εmach precision can be expected.

1.4.2 Fourier extension frame

As in §1.2.1, consider the complex exponentials

ΦN =
{

1√
b− a

e in2πx
b−a

}
IN

, (1.26)

with IN as in (1.12). The set Φ∞ is an orthonormal basis for L2
[a,b], and tensor

products of these are orthonormal bases for L2 over a hypercube R = (a, b)d.
Now consider the space L2

Ω, Ω ⊂ R, with inner product

〈f, g〉Ω =
∫

Ω
f(x)g(x)dx

and associated norm ‖ · ‖Ω. Then any function that is square integrable in R is
square integrable in Ω.

Φ∞ is not an orthogonal basis for L2
Ω, as 〈·, ·〉R 6= 〈·, ·〉Ω in general. It is,

however, a tight frame for L2
Ω, with frame bounds A = B = 1 (see e. g. [25,

Example 5.5.5]). It is also linearly independent. However, Φ∞ is ω-dependent.
Any nonzero function g that is supported only on R \ Ω and vanishes smoothly
at the boundary has

‖g‖R > 0, ‖g‖Ω = ‖f‖Ω.

Thus, for such g and any f ∈ L2
Ω, ‖f − g‖Ω = 0. An illustration can be found in

Fig. 1.3, where several functions in L2
[−2,2] are shown, that are equal on (−1, 1).

This is the origin of the Fourier Extension (FE) name: the extension to R

fext(x) =
∞∑
i=1

ciφi(x), x ∈ R.
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Figure 1.3: Different representations f1, f2, f3 of f(x) = ex in the Fourier basis
on (−2, 2), so that ‖f − fi‖[−1,1] = 0. This illustrates the redundancy in the
frame.

It is well defined everywhere in R and is a periodic extension of the function f .
However, we are usually not interested in any particular extension. In fact, a
better name would be Fourier restriction frame, emphasizing that the interest
is in the approximation properties on the restriction to Ω. Unfortunately,
Fourier Extension is more common than Fourier restriction, so FE will be used
throughout the thesis to describe this frame.

In order to compute converging expansions in this frame, note that since ΦN is
tight with frame bounds 1, it is self dual. The dual frame expansion

f =
∞∑
k=1
〈f, φk〉Ωφk (1.27)

is equivalent to the Fourier series on L2
R of the extension of f by zero

f̃(x) =
{
f(x), x ∈ Ω,
0, elsewhere.

As mentioned in §1.2.1, this Fourier series suffers from the Gibbs phenomenon
if f or any of its derivatives are discontinuous at the boundary of Ω. This
illustrates that even though the canonical dual frame expansion is guaranteed
to converge, the convergence properties might not be very good.

In contrast, the orthogonal projection on HN = span(ΦN ) can converge faster,
under similar conditions as the regular Fourier series.

Theorem 1.18. [1, Proposition 5.8] Let Ω ⊂ (−1, 1)d be a sufficiently smooth
(Lipschitz) domain. If f ∈ Hk,d, the k-th standard Sobolev space1 for Ω, then

1For a definition, see (5.34)
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for the exact projection

‖f − PNf‖ ≤ Ck,dN−k‖f‖. (1.28)

For the regularised projection, as an extension of Theorem 1.17

‖f − PτNf‖ ≤ Ck,d
(
N−k +

√
τ
)
‖f‖. (1.29)

In particular, this result guarantees superalgebraic convergence for infinitely
differentiable f , up to

√
τ for the regularised projection.

1.4.3 Augmented Frames

Frames can be easily constructed by adding elements to a Riesz basis [26,
Definition 6.1.2]. A common technique is to supplement a basis or frame
with a small number of functions with special properties. For example, the
convergence of Fourier series for nonperiodic functions on Ω = [a, b] can be sped
up significantly by considering the truncated frame

ΦN+r = {e ikπx
b−a }IN ∪ {Pk}rk=1, (1.30)

where Pk is a polynomial of degree k, and IN is as in (1.12). A similar result
to Theorem 1.18 holds, where the algebraic rate of convergence is limited by
either the number of continuous derivatives of f , or the number of polynomials
r [1, Proposition 5.9].

Another possibility is to supplement a basis or frame by functions with a known
singularity. If a singularity is present in a function, this may significantly reduce
the convergence of the approximations, but this can be avoided by including the
right functions into the approximation space. We return to augmented frames
in §5.1.

1.5 Sampling

The examples so far have all been approximations fN that attempt to minimise
the L2 norm error ∫

Ω
|f(x)− fN (x)|2dx. (1.31)

Computing the orthogonal projection through inversion of the Gram operator
requires at least the inner products b = {〈f, φi〉}, i ∈ IN . These might be
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difficult to calculate efficiently, or accurately. We say the function f is sampled
through inner products with {φi}∞i=1.

An alternative is to sample f through point evaluations. Replace (1.31) by the
discrete norm ∑

x∈PΩ

|f(x)− fN (x)|2. (1.32)

Here the function f is sampled in a countable set PΩ ⊂ Ω. The approximation
in {φi}∞i=1 that minimises this discrete norm is the solution of the system

Ac = b (1.33)

where
Aij = φj(xi), bi = f(xi).

We call A the collocation matrix. A can be seen as a discrete version of the
synthesis operator TN , mapping coefficients not to functions but to function
samples. If the number of collocation points equals the degrees of freedom
this is an interpolation problem, and for suitable PΩ the collocation matrix
is non-singular and the solution to (1.33) is unique. Depending on the choice
of interpolation points, the degree N interpolant may be very close to the
orthogonal projection PNf , and have similar convergence results. For Chebyshev
interpolation on [−1, 1] the optimal sampling points are the Chebyshev nodes
[100]

xj = cos
(

2j − 1
2N π

)
, j = 1, . . . , N.

For Fourier series on [0, 1] these are the equidistant points [51]

xj = j

N
, j = 0, . . . , N − 1.

Similar results are known for splines [96].

Remark 1.19. When formulating the normal equations A∗Ac = A∗b the entries
(A∗A)ij =

∑
k φi(xk)φj(xk) can be seen as approximations to the elements

of the Gram matrix using a quadrature rule with points xk. If the sample
points are equispaced and continually increased then A∗A→ GN . Similarly A∗b
approximates the inner products of the basis functions with f .

For frame approximations based on point samples, a necessary condition for
good convergence properties is oversampling: the number of sampling points
should exceed the number of degrees of freedom. Unless mentioned otherwise
the oversampling rate is a constant factor so that M = %N, % > 1. The system
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(1.33) is then rectangular, and there is a unique least-squares solution vector c
that minimises

‖Ac− b‖2 =
∑
x∈PΩ

|f(x)− (TNc) (x)|2

When this system is solved through the T-SVD as in §1.4.1, Theorem 1.17 can
be extended to the discrete sample case. Denote by PτM,N the T-SVD solution
of (1.33) with M sample points and N degrees of freedom.
Theorem 1.20. [3, Theorem 1.3]

‖f −PτM,Nf‖ ≤ ‖f −
N∑
n=1

znφn‖+ κτN,N‖f −
N∑
n=1

znφn‖M + τλτM,N‖z‖. (1.34)

For well-behaved constants κτN,N and λτM,N the approximation thus converges
up to τλτM,N if solutions with small norm exist. This markedly improves upon
Theorem 1.17, signifying discretising and oversampling can actually be beneficial.
However, these results are ongoing research and as of yet unpublished. For the
specific case of Fourier extension, similar results have been established already
[4], they will be reviewed in §2.3.2.

Note that the solution of (1.33) through the T-SVD is an explicit algorithm to
compute regularised frame approximations from samples, at a cost of O(N3)
operations. Chapters 3 and 4 describe algorithms that improve upon this
complexity.

An example of such an approximation is shown in Fig. 1.4. The function is
given by f(x, y) = cos(20x2 − 15y2) where the domain takes on the shape of
Belgium. The approximation PτM,Nf where N = 602, τ = 10−14 and % = 2
is shown in Fig. 1.4b. The maximum error satisfies ‖f − f602‖∞ < 10−12 on
Ω, measured as the maximum in 10000 random points. Due to the nature of
ΦN the expansion is periodic when evaluated on the whole of R. Note that an
orthonormal basis for L2

Ω in this case is hard to find, yet a frame for this space
is trivially constructed.

An advantage that will come up repeatedly later on is that evaluation of a
Fourier series in equidistant points can be calculated efficiently through the
Fast Fourier transform (FFT). In particular b with

bi =
N∑
j=1

cjei2πji/N , 0 ≤ i ≤ N − 1 (1.35)

can be computed from c in O(N logN) operations. In §2.1, we will show that
the collocation matrix for Fourier extension problems can be applied quickly to
any vector using the FFT. The related discrete cosine transform (DCT) can be
used to evaluate Chebyshev expansions in Chebyshev points at the same speed.
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(a) Data points (b) Fourier Series on bounding box

Figure 1.4: Approximation of f(x, y) = cos(20x2 − 15y2) on a Belgium-shaped
domain, using a Fourier series on a bounding box.

1.6 Overview

This introductory chapter has identified frames as useful generalisations of the
well-known concept of (orthonormal) bases. A frame for a function space of
interest may be much easier to construct than an orthonormal basis, with the
example of Fourier series on irregular domains illustrated in Fig. 1.4. In order to
keep the coefficients of the orthogonal projection to truncated frames bounded,
the regularised projection Pτ was introduced. These regularised projections
have desirable convergence properties, up to a maximum accuracy of

√
τ or τ

where τ is the regularisation parameter.

When approximating a function based on function samples, the regularised
projection is necessarily oversampled. This sets the stage for Chapters 3 and 5:
we will calculate approximations through solving an oversampled problem based
on point samples using the T-SVD. The algorithms described in these chapters
will provide efficient ways to calculate these approximations in practice.

Before the algorithms can be covered, in the following chapter we will study
the Fourier extension frame in more detail. It has a long history of study as
a self-contained subject, often without explicit links to frame theory. Some of
these results will prove critical to the development of efficient algorithms.

In Chapter 3 we formulate two original algorithms to compute frame
approximations using point samples for one dimensional Fourier extensions.
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The execution time is loglinear in the number of degrees of freedom. Most of
this chapter was previously published as [73], with the exception of the last
section.

In Chapter 4 we adapt one of these algorithms to the higher dimensional case,
and provide some necessary theoretical background. Most of this chapter is
under review for publication as [75].

In Chapter 5 we cover some extensions of these algorithms to various applications.
Examples include boundary value problems, and different types of frames. This
chapter is being prepared for publication as [74].

In Chapter 6 we detail the implementation of these algorithms in a Juliapackage
called FrameFun. Of particular interest is computing with arbitrary domains.
These sections have appeared as [60].

In Chapter 7 we recap the most important contributions made in this thesis,
and outline some possible future directions for this project.





Chapter 2

Fourier Extension

While the results of this thesis generalize to other frames and problem types,
the Fourier Extension problem was the catalyst for all other developments. In
this chapter we first formulate this central problem precisely, fixing the notation
for the later chapters. Then, we go through the history of this problem and the
relevant results from the literature. Of particular importance is the spectrum of
the Gram and collocation matrices arising when computing the approximations.

2.1 Notation

In this section we formally state the Fourier extension problem as introduced in
§1.4.2. Without loss of generality, assume that Ω ⊂ R = [0, 1]D, so that we can
use a tensor-product of the standard Fourier series on [0, 1]. In order to avoid
any periodicity requirements on f , we assume further that Ω lies fully in the
interior of the box R. In the following, we will consistently use the symbols Ω
for the time domain, and Λ for the frequency domain. For a set PΛ with NΛ
frequencies, we denote the basis functions and the function space they span by

φl(x) = ei(x·l)2π, (2.1)

ΦNΛ = span{φl}l∈PΛ . (2.2)

Here, x = (x1, . . . ,xD) is a D-dimensional point and l = (l1, . . . , lD) is a D-
dimensional integer index. For simplicity, we assume an equal number of degrees
of freedom nΛ per dimension, hence NΛ = nDΛ and b−nΛ/2c < li < dnΛ/2e.

25
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This restriction could be lifted at the cost of minor complications further on,
and it is not present in our implementation.

Disregarding the canonical dual frame expansion, we are interested in the
orthogonal projection

PNΛf = arg min
g∈ΦNΛ

‖f − g‖Ω. (2.3)

The problem of computing PNΛf is sometimes referred to as the Continuous
Fourier Extension, because the norm in (2.3) is the L2

Ω norm.

Any g ∈ ΦNΛ is uniquely described by a set of coefficients c ∈ CnΛ×···×nΛ . In
what follows we will often assume an implicit linearization c ∈ CNΛ . These
coefficients will be the result of the approximation algorithm, so we look for

c = arg min
c∈CNΛ

‖f −
∑
l∈PΛ

clφl‖Ω. (2.4)

The minimizer of (2.4) is found by constructing the Gram matrix

Gk,l = 〈φk, φl〉Ω, k, l ∈ PΛ (2.5)

and solving the system

Gc = b, bl = 〈f, φl〉Ω. (2.6)

However, the computational cost associated with evaluating the integrals in the
right hand side of (2.6) is considerable, since the integrals are over Ω and not
over the full box R. This precludes the use of the FFT and one would have to
resort to some type of quadrature on Ω.

Instead, in this thesis we focus on the Discrete Fourier approximation. That is,
the approximation found through oversampled collocation in equispaced points.
We choose a point set PR on R (recall that R = [0, 1]D) with nR points per
dimension, and restrict those to Ω. In summary

PR =
{(

k1
nR

, . . . ,
kD
nR

)∣∣∣∣ ∀i : 0 ≤ ki < nR

}
, PΩ = PR ∩ Ω. (2.7)

There are efficient transformations using the FFT between the set PR of NR =
nDR points in the time domain and the set PR̂ in the frequency domain. If we
choose nR ≥ nΛ, then PR̂ encompasses PΛ. The sampling sets thus defined
are shown in Fig. 2.1. Though other choices can be made, this choice is such
that we can efficiently evaluate a Fourier series using the index set PΛ in all
the points of PΩ: we extend the coefficients with zeros from PΛ to PR̂, followed
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PΩ
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(a) time domain

PΛ

PR̂

(b) frequency domain

Figure 2.1: The spatial domain Ω encompassing the sample set PΩ, and the
frequency domain Λ encompassing the discrete frequencies PΛ. There is a fast
FFT transform between the encompassing sets PR and PR̂.

by an FFT transform from PR̂ to PR, followed by a restriction of the values to
those points in PΩ.

We mostly assume a fixed oversampling rate, meaning % = NΩ/NΛ is constant.
We refer to [5, 3] for a study on the interplay of oversampling rate and choice
of bounding box in one dimension, and more general results regarding the
oversampling rate for collocation in frames. The one-dimensional results are
recapped in §2.3.3.

As in §1.5, the minimization (2.4) is reformulated as a discrete least squares
problem

FNΛ(f) = arg min
g∈ΦNΛ

∑
x∈PΩ

(f(x)− g(x))2. (2.8)

Assuming a linear indexing xk of PΩ from 1 to NΩ and φj of PΛ from 1 to NΛ,
this is a least squares matrix problem

Ac = b, A ∈ CNΩ×NΛ , b ∈ CNΩ (2.9)

where
Akj = 1√

NR
φj(xk), bk = f(xk). (2.10)

The scaling of the basisfunctions is such that A is precisely a subblock of a
multidimensional unitary DFT matrix, which will be of importance later on.
This subblock property is a consequence of our choice of discrete grids, and it
results in a fast matrix-vector product using the procedure described above:
extension in frequency domain, DFT, and restriction in the time domain. Indeed,
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note that in this discrete setting the action of the matrix A corresponds to
evaluating a length NΛ Fourier series in the points of PΩ.

Note that there is also a fast matrix-vector product for A∗ and it corresponds
to the opposite sequence of operations: extension from PΩ to PR by zeros, fast
transform to PR̂, followed by restriction in the frequency domain from PR̂ to
PΛ. Yet, it is clear that the solution to Ax = b is not simply given by x = A∗b.
Indeed, this is precisely the canonical dual frame approximation from §1.4,
which is likely to exhibit the Gibbs phenomenon unless f goes to zero smoothly
along the boundary δΩ.

Remark 2.1. Though this chapter contains results for Fourier bases exclusively,
a Chebyshev collocation matrix in Chebyshev points is entirely analogous. It
consists of an appropriately scaled subblock of a multidimensional DCT matrix.
The DCT is highly similar to the FFT, and in practice often computed through
an optimised FFT routine. Therefore, most of the arguments, although not
made explicit, apply to this case as well. This is of course due to the close
connection between Chebyshev polynomials and trigonometric polynomials (see
(1.14)).

Of particular importance is the SVD of the Gram (2.5) and collocation (2.10)
matrices. As will become apparent throughout this chapter, the singular values
for the matrices stemming from Fourier Extension problems always have a
distinct profile, shown in Fig. 2.2. Three distinct regions are visible. For some
1 > τ > 0 we observe:

• A region Iα := {σ : 1 > σ > 1 − τ} where all singular values are 1 up
to a tolerance τ . This region contains approximately NΩNΛ/NR singular
values.

• A region Iβ := {σ : 1− τ ≥ σ > τ}, also referred to as the “plunge region”
in a more general context regarding truncated frames. This name will
be used often through the following chapters. The size of this region as
the degrees of freedom NΛ increases is always o(NR̂). This result can
be traced back to [65, Theorem 1], but the first term in the asymptotic
expansion can often be estimated, see Property 2.15 and Theorem 4.17.

• A region Iγ := {σ : τ ≥ σ > 0} where the singular values further decay
exponentially. Due to rounding errors, these singular values are difficult
to compute past σ ∼ εmach without resorting to extended precision.

For later use we denote by η(τ,NΛ) the size of the plunge region Iβ ,

η(τ,NΛ) = min
1≤j<k≤NΛ

(k − j − 1) s.t. σj > 1− τ, τ ≥ σk. (2.11)
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Figure 2.2: The subdivision of the spectrum of A into three distinct intervals,
here indicated based on τ = 10−14. Due to rounding errors, the eigenvalues in
region Iγ don’t decay past machine precision.

The subdivision of singular values naturally leads to a subdivision of singular
vectors. Let

UΣV ∗ =
[
Uα Uβ Uγ

] Σα
Σβ

Σγ

 [Vα Vβ Vγ
]∗
,

where Σα is a diagonal matrix containing the singular values from Iα, and
Σβ and Σγ are defined analoguously. Note that for the collocation and Gram
matrices each right singular vector vi corresponds to a set of Fourier coefficients.
Let

Hα = span {TNv} , v ∈ Vα
denote the space spanned by the right singular vectors Vα, with similar definitions
Hβ and Hγ for the other regions. Note that since the singular vectors are
orthogonal and T is isometric, these spaces consist of orthonormal functions:

〈TNvi, TNvj〉 = 〈vi, vj〉 = δij

Thus, the spaces Hα,Hβ and Hγ are mutually orthogonal. Recall from §1.4.1
that the regularized projection PτN is defined in terms of the Truncated Singular
Value Decomposition

AτN =
[
Uα Uβ

] [Σα
Σβ

] [
Vα Vβ

]
. (2.12)

In this light the regularized projection PτN can be seen as an orthogonal
projection on the space Hα+β = Hα ∪Hβ . These function spaces are spanned
by Prolate Spheroidal Wave Functions and related functions, the topic of the
next section.
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2.2 FE as bandlimited Extrapolation

The Gram and collocation matrices for the Fourier Extension problem have
appeared in a multitude of contexts, starting with signal processing research at
Bell labs in the 1960s and 1970s. Slepian, Landau, Pollack and collaborators
studied the problem of bandlimited extrapolation in a series of highly influential
papers [91, 66, 84, 85, 89]. The problem they considered is the reconstruction of
a signal from a time-limited observation, knowing the signal has limited support
in the frequency domain. The following subsections describe the solutions
to this extrapolation problem and its generalizations. As it turns out, the
orthonormal bases for these problems are heavily connected to the FE problem.
The first three subsections describe one-dimensional results, while §2.2.4 details
higher-dimensional generalizations.

2.2.1 Prolate Spheroidal Wave Functions

Denote by f(x) and F (ξ) a function in L2 and its Fourier transform, so that

F (ξ) =
∫ ∞
−∞

f(x)e−i2πxξdx, f(x) =
∫ ∞
−∞

F (ξ)ei2πxξdξ. (2.13)

The time- and bandlimiting operators D and B are then defined as

Df(x) = f̆(x) =
{
f(x) |x| ≤W
0 |x| > W

Bf(x) =
∫ ω

−ω
F (ξ)ei2πξxdξ, (2.14)

which project onto L2
[−W,W ] and PWω, the Paley-Wiener space of bandlimited

functions, respectively. In the context of the previous section this means
Ω = [−W,W ] and Λ = [−ω, ω]. Note that the bandlimiting operator can also
be written as

Bf(x) =
∫ ∞
−∞

f(s) sin(2πω(x− s))
π(x− s) ds. (2.15)

The Heisenberg-Gabor limit states that no nonzero function can be simultane-
ously concentrated in both time and frequency,

‖BDf‖ < ‖f‖.

However, one can look for nearly-invariant functions under this operator,
functions for which ‖BDf‖/‖f‖ is as close to 1 as possible.
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Definition 2.2. The Prolate Spheroidal Wave Functions ϑ are the eigenfunc-
tions of the operator BD, i.e. the solutions of

λϑ(x) =
∫ W

−W
ϑ(s) sin(2πω(x− s))

π(x− s) ds = BDϑ, (2.16)

normalised so that ‖ϑ‖ = 1.

(2.16) is a Fredholm integral equation of the first kind. Slepian and collaborators
showed that this equation has solutions only for select values of λ, a countably
infinite set 1 > λ0 > λ1 > · · · > 0. Therefore there exists a unique Prolate
Spheroidal wave function ϑ0 that is maximally concentrated in both time and
frequency, with ‖BDf‖/‖f‖ = λ0. This zeroth order Prolate is often used in
filter designs [79, 97]. The naming stems from the curious observation that
these functions are solutions to the spheroidal wave equation1(

1− x2

W 2

)
d2ϑi
dx2 − 2xdϑi

dx
− (2πωW )2

x2ϑi = θiϑi. (2.17)

This is a Sturm-Liouville equation with a set of unique eigenvalues · · · > θi−1 >
θi > θi+1 > . . . corresponding to the functions ϑi, but different from the λi
[91].

Since B and D are idempotent operators, it is convenient to consider the ϑi
eigenfunctions of the Hermitian operator BDB. Timelimiting both sides of (2.16),
the timelimited functions ϑ̆i = Dϑi are the eigenfunctions of the Hermitian
operator DBD, with corresponding eigenvalues λi. The term Prolate Spheroidal
Wave function is used for both the ϑi and the ϑ̆i.

Property 2.3. As eigenfunctions of a Hermitian operator, the ϑi and ϑ̆i are
orthogonal ∫ ∞

−∞
ϑi(x)ϑj(x)dx = δij ,

∫ W

−W
ϑ̆i(x)ϑ̆j(x)dx = λiδij ,

and they are complete in PWω and L2
[−W,W ], respectively.

The Prolate Spheroidal Wave functions thus form an orthonormal basis for
PWω, while the eigenvalue λi represents the fraction of energy of ϑi contained
in [−W,W ]. When normalised in L2

[−W,W ], {ϑi/
√
λi} becomes an orthonormal

basis for this space as well.
1There are differing conventions regarding notation and normalisation for these functions,

we follow [91] here.
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This leads to a straightforward approach to continuous bandlimited extrapola-
tion. Let f be a function segment in L2

[−W,W ]. Then

g =
∞∑
i=1

〈ϑ̆i, f〉
λi

ϑi (2.18)

is a bandlimited function that agrees with f in the interval due to the
completeness of the ϑ̆i in L2

[−W,W ]. Furthermore, when truncating the sum, the
first terms have the largest eigenvalues and capture the ϑi with relatively more
of their energy inside the interval. The following relevant properties are from
[91].
Property 2.4. The ϑi are eigenfunctions of the finite Fourier transform,∫ W

−W
ei2πtξϑn(t)dt = in

(
λW

ω

)1/2
ϑn

(
ξW

ω

)
.

Property 2.5. The eigenvalues λi cluster near 1 for low values of i, and decay
exponentially after a set breakpoint

λi ≈ 1, i� 4ωW and λi ≈ 0, i� 4ωW.

The width of the region where λi ∈ (ε, 1− ε) grows as log(ωT ).
Property 2.6. Among functions in PWω, ϑ0 is the most concentrated in
(−T, T ) and its concentration is λ0. Among functions in PWω orthogonal to
ϑ0, ϑ1 is the most concentrated, with concentration λ1, and so on.

The suitability of PSWFs as an approximation scheme was investigated by Boyd
[12], amongst others. The main difficulty associated with this technique is that
the PSWFs can not be expressed in terms of classical functions. Thus, numerical
schemes must always use approximations, which may be computationally
expensive [79].
Remark 2.7. From the definition, it is clear the PSWF are only defined up to
some complex unitary constant. This will hold for the generalisations in the
following sections as well. Uniqueness is usually obtained through requiring
either ϑi(0) or ϑ′i(0) be real and positive. Since we are only interested in the
spaces these functions span, we will not explicitly impose such restrictions.

2.2.2 Discrete Prolate Spheroidal Wave Functions and Se-
quences

There are several possible discretisations for PSWFs. The most well-known is
the one proposed by Slepian[89], where the Fourier transform from (2.13) is
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replaced with a Fourier series representation as in §1.2.1, on R = [−1/2, 1/2]

f(x) =
∞∑

n=−∞
cnei2πxn, cn = 1

2π

∫ 1/2

−1/2
f(s)e−i2πsnds.

One could define the time and band-limiting operators here as

Df(x) = f̆(x) =
{
f(x) |x| ≤W
0 |x| > W

Bf(x) =
∑
n∈IN

(
1

2π

∫ 1/2

−1/2
f(s)e−i2πsndx

)
ei2πxn.

Here Ω = [−W,W ] is some subinterval of [−1/2, 1/2], and IN is as in (1.12).
For ease of notation we assume NΛ odd, since the expressions for the DPSWF
and DPSS are slightly different based on the parity of NΛ. Note that, similar
to (2.15),

Bf(x) =
∫ 1/2

−1/2
f(s) sinNΛπ(x− s)

sin π(x− s) ds.

and
BDf(x) =

∫ W

−W
f(s) sinNΛπ(x− s)

sin π(x− s) ds.

Definition 2.8. The Discrete Prolate Spheroidal Wave Functions Φi are defined
as the eigenfunctions of BD

λiΦi = BDΦi =
∫ W

−W
Φi(s)

sinNΛπ(x− s)
sin π(x− s) ds, i = 1, . . . , NΛ, (2.19)

and the associated Discrete Prolate Spheroidal Sequences ψ by

λi

∞∑
n=−∞

ei2πxnψi[n] = BΦi.

The properties from section 2.2.1 largely carry over. The integral equation
(2.19) has a degenerate kernel, meaning it has only NΛ non-zero eigenvalues
which are distinct. The DPSWF are the NΛ eigenfunctions of this operator. As
before, the DPSWF satisfy a Sturm-Liouville differential equation; the DPSS
satisfy a second order difference equation. As a result, the double orthogonality
holds:
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Property 2.9.∫ W

−W
Φi(x)Φj(x)dx = λi

∫ 1/2

−1/2
Φi(x)Φj(x)dx = λiδij

∑
n∈IN

ψi[n]ψj [n] = λi

∞∑
n=∞

ψi[n]ψj [n] = λiδij .

Furthermore, {Φ̆i/
√
λi} forms an orthonormal basis for its span and can be

used for approximations

g =
NΛ∑
i=1

〈Φ̆i, f〉
λi

Φi

We note the following two properties concerning the index-limited sequences ψ̆i.
Property 2.10. The ψ̆i are the eigenvectors of the NΛ ×NΛ matrix Q with
entries

Qij =
∫ W

−W
e−i2πs(i−j)ds = sin 2πW (i− j)

π(i− j) , i, j = 1, . . . , NΛ.

The matrix Q is known as the prolate matrix [102].

Property 2.11. The ψ̆i are the eigenvectors of the NΛ×NΛ tridiagonal matrix
χ with entries

χij =


1
2 i(NΛ − 1), j = i− 1(
NΛ−1

2 − i
)2 cos 2πW, j = i

1
2 (i+ 1)(NΛ − 1− i), j = i+ 1
0, |j − i| > 1

, j, i = 0, . . . , NΛ − 1.

Property 2.11 is a direct result of the DPSS satisfying a second order difference
equation. At this point the connection to the FE problem becomes clear: the
matrix Q from Property 2.10 is exactly the Gram matrix (2.5) of the Continuous
FE with Ω = [−W,W ] and PΛ = IN . As such

PτNΛ
f =

∑
λk>τ

〈Φ̆i, f〉
λi

Φi,

the (regularized) orthogonal projections on the FE frames are naturally expressed
in terms of the Φ and ψ. This connection leads to a computational advantage.
The tridiagonal matrix χ is well conditioned with separated eigenvalues [102, 50].
Therefore, individual functions ψ̆ can be calculated efficiently as the eigenvectors
of χ, in contrast to the PSWF [48].
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2.2.3 Periodic Discrete Prolate Spheroidal Sequences

Seeing the close relation between continuous FE and the DPSWF in the
previous section, one can wonder whether a further generalization of the Prolate
Spheroidal Wave Functions exists that relates to the discrete FE, where the best
approximation is formulated in terms of oversampled collocation. The answer
is found in discrete bandlimited approximation, as defined in [61, 110, 20].

With the Discrete Fourier Transform for sequences of length NR as

G[k] = 1√
NR

NR−1∑
n=0

g[n]e−i2πkn/NR g[n] = 1√
NR

NR−1∑
k=0

G[k]ei2πkn/NR .

Denote by F the NR ×NR DFT matrix that maps g to G. Since F is unitary
the inverse transform matrix is F ∗. Then as before the (discrete) time- and
bandlimiting operators are

DΩv[k] = v̆[k] =
{
v[k] k ∈ PΩ

0 otherwise

BΛv = FDΛF
∗v.

Here PΩ and PΛ denote the time and frequency sampling sets respectively. The
operators are NR ×NR real symmetric projection matrices, i.e. D2

Ω = DΩ and
B2

Λ = BΛ. If PΛ is as in (1.12) and thus consists of contiguous frequency samples
(−(NΛ − 1)/2, . . . , (NΛ − 1)/2) mod NR, BΛ is the discrete prolate matrix

(BΛ)jk = 1√
NR

∑
l∈PΛ

ei (j−k)2πl
NR = 1√

NR

sin (j−k)NΛπ
NR

sin (j−k)π
NR

. (2.20)

Note the similarity to the matrixQ from Property 2.10. The discrete bandlimited
extrapolation problem formulated in terms of these operators is to find, given
DΩf , a bandlimited sequence BΛg so that

DΩBΛg = DΩf (2.21)

Jain and Ranganath [61] approached this problem by formulating the normal
equations

B∗ΛDΩBΛg = B∗ΛDΩf.

They suggested the Levinson-Trench algorithm [112] to compute the inverse of
B∗ΛDΩBΛ in O(N2

R) operations. Alternatively, they suggested using the SVD
of B∗ΛDΩBΛ to solve the least-squares problem. This led to the definition of
the Periodic Discrete Prolate Spheroidal Sequence[110].
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Definition 2.12. The Periodic Discrete Prolate Spheroidal Sequences ϕi are
the eigenvectors of the Hermitian matrix B∗ΛDΩBΛ for which the eigenvalue µi
is nonzero,

B∗ΛDΩBΛϕi = µiϕi, µi > 0.

The P-DPSS share many properties with the PSWF and DPSWF. From the
definition it follows that the time-limited versions satisfy

DΩBΛDΩϕ̆i = µiϕ̆i, µi > 0. (2.22)

The ϕi are doubly orthogonal

〈ϕi, ϕj〉 = δij , 〈DΩϕi, DΩϕj〉 = µiδij .

The ϕi properties are similar to those of PSWFs:

Property 2.13. The eigenvalues satisfy 1 ≥ µi ≥ 0.

Proof. Since BΛ is a projector it has eigenvalues 1 and 0. The property follows
directly from the interlacing theorem for principal submatrices of Hermitian
matrices (see Theorem 5.1).

Property 2.14. [110] There are exactly min(NΛ, NΩ) P-DPSS. If NΩ ≥ NΛ,
the ϕi are complete in the space of bandlimited sequences, spanned by the
eigenvectors of BΛ. If NΩ ≤ NΛ, the nonzero parts of the ϕ̆i are complete in
RNΩ .

Property 2.15. [106, 35, 111] Like the eigenvalues of the PSWFs, the
eigenvalues µi are distinct and cluster exponentially near 1 and 0, in that

µi ≈ 1, i� NΩNΛ
NR

and µi ≈ 0, i� NΩNΛ
NR

.

The width of the plunge region where µi ∈ (τ, 1− τ) grows as O (logNΩNΛ/NR),
for any 1 > τ > 0.

Remark 2.16. Throughout this thesis we assume the oversampling ratio is
constant, i.e. NΩ = %NΛ. We further have a constant bounding box PR with
respect to Ω. In this case,

O (logNΩNΛ/NR) = O(logNΛ), NΛ →∞,

and we use the latter for notational convenience.
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Property 2.17. The P-DPSSs satisfy a second order difference equation [110]

bkϕ̆i[k − 1] + ckϕ̆i[k] + bk+1ϕ̆i[k + 1] = θiϕ̆i[k], k = 1, . . . , NΩ, (2.23)

with coefficients

bk = sin
(
πk

NR

)
sin
(
π(NΩ − k)

NR

)

ck = − cos
(
π(2k − 1−NΩ)

NR

)
cos
(
πNΛ
NR

)
.

Here ϕ̆i[0] and ϕ̆i[NΩ + 1] are understood to be zero.

The other properties follow directly from the definitions:

Property 2.18. Among sequences of length NR, with frequency support in PΛ,
ϕ0 is the most concentrated in PΛ. Among sequences of equally limited frequency
support orthogonal to ϕ0, ϕ1 is the most concentrated in Ω, and so on.

Property 2.19. Due to the duality of time and frequency, the P-DPSSs are
eigenvectors of the index-limited DFT, but with the roles of Ω and Λ interchanged.
Denote by ϕΩ,Λ the P-DPSS as in Definition 2.12, then

DΛFϕΩ,Λ,i = DΛϕΛ,Ω,i.

As with the DPSS, Property 2.17 leads to efficient calculations of a single
P-DPSS. We will return to this procedure in the next chapter. Figure 2.3
shows examples of TNϕi, the Fourier series associated with the P-DPSS, for
NΛ = 21, NΩ = 41, and NR = 81. R = [−1, 1] and Ω = [−1/2, 1/2]. For the
first few sequences, µi is very close to one, and ‖ψi‖ ∼ ‖ψ̆i‖, so the energy is
almost completely concentrated inside Ω. For the last sequences, λi is close
to zero, and ‖ψi‖ ∼ 0, so the energy is almost completely concentrated in the
complement of Ω. Property 2.15 is equivalent to saying the number of these
functions, that are significant at the boundary of Ω, grow only as O(logNΛ).

A closer look at the collocation matrix A from the discrete Fourier extension in
(2.10) reveals that

(AA∗)kl = (DΩBΛDΩ), k, l ∈ PΩ

(A∗A)kl = (DΛBΩDΛ), k, l ∈ PΛ.

From (2.22) it follows that the left singular vectors of A are thus exactly the
ϕ̆Ω,Λ, while the right singular vectors are the ϕ̆Λ,Ω, the dual P-DPSS for which
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(a) TNϕ1 (b) TNϕ2 (c) TNϕ3

(d) TNϕ4 (e) TNϕ5 (f) TNϕ6

(g) TNϕ7 (h) TNϕ8 (i) TNϕ9

(j) TNϕ10 (k) TNϕ11 (l) TNϕ12

(m) TNϕ13 (n) TNϕ14 (o) TNϕ15

(p) TNϕ16 (q) TNϕ17 (r) TNϕ18

(s) TNϕ19 (t) TNϕ20 (u) TNϕ21

Figure 2.3: TNϕi for NΛ = 21, NΩ = 41, NR = 81. In this case R = [−1, 1] and
Ω = [−1/2, 1/2]. The ratio ‖ψi‖Ω/‖ψi‖ = µi decreases with i.
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Ω is the frequency domain and Λ is the time domain. For the singular values
σi of A this leads to σi = √µi. The collocation problem is therefore just a
reformulation of (2.21).

Where the normal equations method by Jain and Ranganath has the function
values as unknowns

g =
NR−1∑
i=0

1
µi
〈ϕ̆i, BΛDΩf〉Ωϕi,

calculating the coefficients of the discrete FE by truncating the SVD as in (2.12)
leads to

(AτN )† f =
∑
√
µi>τ

1
√
µi
〈ϕ̆Λ,Ω,i, f〉Ωϕ̆Ω,Λ,i. (2.24)

This formulation of the FE together with the P-DPSS properties listed above
leads to the fast algorithms in the following chapters. Note here that the
formulation of the normal equations leads to a lower number of P-DPSS present
in the approximation compared to (2.24), since the lowest eigenvalue present is
µi ∼ τ , versus µi ∼ τ2 for the collocation system. This is reminiscent of the
factors

√
τ and τ in Theorem 1.17 and Theorem 1.20.

Besides these SVD methods to solve (2.21), a well known method is the Papoulis-
Gerschberg algorithm [44, 81]. It uses a two-step iteration process to alternate
matching the given data and complying with the frequency constraints. Variants
that use the conjugate gradients and related methods to speed up the iteration
process tend to perform reasonably well numerically [95]. They operate at a
cost of O(NΛ logNΛ) operations per iteration, where the number of iterations
scales with the bandwidth of the signal. However, these methods only provide
a very modest accuracy.

2.2.4 Multi-dimensional extensions

While the one dimensional Prolate Spheroidal Wave functions received
considerable interest in signal processing and mathematics (for overviews, see
[79, 58, 90, 49]), the generalization to multiple dimensions is not straightforward.
Most generalizations are restricted to a setting where Ω = Λ, or require at
least some structure in both time and frequency domains. In contrast, the
most general multidimensional equivalent would be for arbitrary ‘frequency’
and ‘time’ domains.

Multidimensional equivalents of PSWFs were first considered by Slepian and
Pollack [85]. They demonstrated a double orthogonality property similar to the
one dimensional case, and that the eigenvalues of the corresponding integral
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equation are real and positive. Afterwards, they focused only on the most
symmetric case, where both Ω and Λ are circular. In this case, the symmetry of
the problem leads to PSWF generalizations as a combination of Bessel functions
and one-dimensional PSWFs. Later results were described for rectangular time
and frequency domains [9], or circular frequency regions [87]. For an overview,
see [88].

Results on spectral properties for arbitrarily shaped regions appeared in 1982
[105], when H. Widom stated a conjecture on the traces of functions of Wiener-
Hopf operators with discontinuous symbols in higher dimensions. The subject
was the operator

Tαf(x) =
( α

2π

)d
χΩ

∫
Λ

∫
Ω

eiαξ·(x−y)f(y)dydξ, α > 0,

= DΩBαΛ/2πDΩ,

with higher-dimensional time and bandlimiting defined as in (2.14). Widom
conjectured this operator would obey the trace relation

lim
α→∞

tr(Tα − T 2
α) = αd−1 log βW1(δΛ, δΩ) + o(αd−1 logα). (2.25)

As shown in [67, 106], such trace relations are useful tools in determining the
size of the plunge region. We will return to this in Lemma 4.16. Combined with

tr(Tα) =
( α

2π

)d ∫
Ω

∫
Λ
dξdx, (2.26)

(2.25) yields a plunge region that grows at least one order slower in α than the
region of ones (up to a log-factor). Moreover, the constant

W1(Λ,Ω) = 1
2(2π)d+1

∫
δΛ

∫
δΩ
|nδΛ(x) · nδΩ(ξ)|dξdx

is dependent only on the geometry of the domains Ω and Λ. This conjecture was
proven roughly 30 years after its first appearance, by Sobolev [93] for arbitrary
smooth domains, and the proof was later extended to piecewise continuous
domains [92]. In §4.2.2 we prove a similar trace relation for the discretised
higher dimensional version.

2.3 FE as approximation in a frame

Approximations on Ω involving a Fourier series on a bounding box R were
studied under different names: FPIC-SU [11, 13], Fourier Continuation (FC)
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[14, 15] and Fourier Extension [59]. As in §2.1, the least squares approximation
is computed on an equispaced grid of collocation points.

The usefulness of approximation schemes hinges on three properties: the rate
of convergence to the given function, the stability of the required computations,
and the speed at which they can be computed. Considerable effort has been
put into quantifying the first two properties both analytically and numerically
for the one-dimensional FE. See [59] for an analysis where the FE problem
is understood in terms of orthogonal polynomials, and [2, 4, 70] where it is
seen in the context of frames. In some sense these results are special cases of
Theorem 1.17 and Theorem 1.20, but they paint a more detailed picture that is
specific for the FE. The following subsections recap the most important points.

The results distinguish between the exact discrete and continuous FE solutions
PNΩ,NΛf and PNΛf , and their computer-implemented counterparts. As in
§1.4.1, computing the exact solutions is known to be unstable, as they can grow
unbounded outside the domain of interest. Numerical algorithms however will
never compute these exact solutions. Due to regularisation, the numerical FEs
PτNΩ,NΛ

f and PτNΛ
f are more stable, while maintaining the desired convergence

behaviour. As before, the regularized projections are obtained through the
Truncated Singular Value Decomposition.

Remark 2.20. In [4], the analysis was carried without loss of generality for
Ω = [−1, 1], R = [−T, T ]. We will keep the shorthand T = R/Ω.

2.3.1 Stability

Following [4], stability is defined in terms of the operator norm of the FE
mapping

κ(PNΛ) = sup{‖PNΩ(b)‖ : b ∈ CNΩ , ‖b‖ = 1},

where, with slight abuse of notation, PNΩ(b) is the Fourier Extension obtained
by solving the linear system (2.9) or (2.6) with right hand side b. Note
the distinction from the condition number of the matrices GN and AN , that
characterize the mapping from samples to coefficients, whereas this condition
number characterizes the mapping from samples to approximations. These
condition numbers can be computed for the continuous and discrete FEs, both
the exact and numerical versions.

Theorem 2.21. [4, Lemma 3.5, Theorem 5.4] The condition numbers for the
exact projections PNΩ,NΛ and PNΛ are

κ(PNΛ) = E(T )2NΛ , κ(PNΩ,NΛ) = D(NΛ, NΩ),
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where
E(T ) = cot2

( π

4T

)
and

D(NΛ, NΩ) = sup{‖φ‖Ω : φ ∈ ΦNΛ ,
∑
x∈PΩ

|φ(x)|2 = NΩ/2}.

Thus, it grows exponentially in NΛ for the exact solution to the continuous
problem, and is bounded for the exact solution to the discrete problem only
when the quantity D(NΛ, NΩ) is bounded, which was shown to be only when
NΩ ∼ N2

Λ. Roughly speaking, this means a Fourier series that is bounded at
NΩ equispaced points must have a degree that grows only as the square root of
the number of samples. Moreover, D(NΛ, NΩ) grows exponentially for a fixed
oversampling rate NΩ = %NΛ.

When looking at the numerical FEs the situation changes considerably.

Theorem 2.22. [4, Theorem 4.7, Theorem 5.11]

κ(PτNΛ
) . E(T )−NΛ , κ(PτNΩ,NΛ

) . τ−a(%,T )),

Regularizing PNΛ still leads to exponential ill-conditioning, but it is less severe
than that in Theorem 2.21. The condition number of the regularized FE based
on point samples is dependent on a constant 0 < a(%;T ) ≤ 1, independent of
NΛ, that satisfies a(%;T )→ 0 as %→∞ for fixed Ω and bounding box R. This
means that for a sufficiently large oversampling factor %, the condition number
of the numerical FE mapping can be made reasonably close to 1; in particular,
for Ω/R = 1/2, oversampling by % = 2 is sufficient.

Meanwhile, from the previous sections we know the condition number of the
Gram and collocation matrices grows exponentially as NΛ → ∞. This is
surprising, given the good condition of the FE mapping. It can be understood
by noting that extensions with small coefficient norm and small residual are
guaranteed to exist. The numerical algorithms will steer clear of the unstable
exact solution, and instead return one of these alternatives. For a full exposition
on the stability of FE calculations, see [4].

2.3.2 Convergence

Concerning convergence, Theorem 1.18 already established algebraic convergence
depending on the smoothness of f . For analytic functions, convergence is limited
by the region of analyticity of f in the complex plane, similar to the results
for Fourier Series (Theorem 1.11) and Chebyshev Polynomials (Theorem 1.12).
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This region Γ(ρ) is a Bernstein ellipse Θ(ρ) under a transformation that allows
Fourier extensions to be understood as polynomial approximations [59]. Again
for Ω = [−1, 1], R = [−T, T ] this is

Θ(ρ) =
{

1
2
(
ρ−1eiθ + ρe−iθ) : θ ∈ [−π, π]

}
, (2.27)

Γ(ρ) =
{
π

T
arccos

[
c(T ) + 1− c(T )

2 (z + 1)
]

: z ∈ Θ(ρ)
}

(2.28)

where c(T ) = cos(π/T ).

Theorem 2.23. [2, Theorem 2.3, Theorem 5.4] For functions f that are
analytic in Γ(ρ∗) and bounded on the boundary, the exact FEs converge
geometrically, with a speed

‖f−PNΛf‖ ≤ cfρ−NΛ , ‖f−PNΩ,NΛf‖ ≤
√

2(1+D(NΛ, NΩ)) inf
φ∈ΦNΛ

‖f−φ‖∞

Here ρ = min{ρ∗, E(T )} and cf is proportional to maxx∈Γ(ρ) |f(x)|.

For the FE from equispaced data, this theorem states that for exponential
convergence of the exact solution, D(NΩ, NΛ) should be bounded. As with the
condition number, constant oversampling is insufficient here.

The situation changes again when introducing the regularization.

Theorem 2.24. [2, Section 5.3.2] If f is analytic in Γ(ρ∗) and bounded on its
boundary, than for the regularized FEs :

1. If NΛ < N2, where N2 is a function-independent breakpoint, ‖f −
PτNΩ,NΛ

f‖ converges or diverges exponentially fast at the same rate as the
exact solution.

2. When NΛ ≤ N0 (continuous) or N2 ≤ NΛ ≤ N1 := 2N0 (discrete), where
N0 is another function-independent breakpoint depending, both ‖f−PτNΛ

f‖
and ‖f − PτNΩ,NΛ

f‖ decay like ρ−NΛ .

3. When NΛ = N0 or NΛ = N1, the errors are approximately

‖f − PτNΛ
f‖ ≈ cf (

√
τ)df , ‖f − PτNΩ,NΛ

f‖ ≈ cfτdf−a(%;T ),

where cf is as before, and df = log ρ
logE(T ) ∈ (0, 1].

4. When N > N0 or N > N1, the errors decay at least super algebraically
fast down to maximal achievable accuracies of order

√
τ and τ1−a(%;T )

respectively.
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This behaviour of the error offers insight into the usability of Fourier extensions.
A first observation is that the continuous FE is limited to a maximal achievable
accuracy of

√
τ . Coupled with the need to compute Fourier integrals to compose

the right hand side b in (2.6), this makes the continuous FE unfit for practical
use. However, the algorithms for the discrete FE in the following chapters can
be adapted to this context with little extra effort. This is documented in §3.4.1.

On the contrary, the numerical discrete FE guarantees convergence up to a
certain power of τ . By varying this cutoff, the oversampling and the ratio
R/Ω, the maximum achievable accuracy can be made very close to the machine
precision.

Remark 2.25. The error behaviour in Theorem 2.24 seems to be contradicting
a well-known result by Platte, Trefethen and Kuijlaars [83], that states that no
stable procedure for approximating functions from equally spaced samples can
converge exponentially for analytic functions. However, the Fourier extension
from equispaced points circumvents this result by only guaranteeing convergence
up to some prescribed tolerance, see [4] for a more thorough discussion.

Remark 2.26. In [4] a third type of FE was considered, the discrete FE. This
approach consists of collocation in so-called mapped-Chebyshev nodes. The
collocation solution using these nodes is an exact projection, under a weighted
inner product, and has similar properties to the equispaced FE PNΩ,NΛ . However,
it has no known connection to Prolate Spheroidal wave theory, and in particular
the collocation matrix has a spectrum that is markedly different from that
in Fig. 2.2. Since the algorithms in the next chapter heavily depend on this
singular value distribution, we further disregard this discrete FE.

2.3.3 Influence of the bounding box

So far we have assumed nothing about the bounding box R. The qualitative
behaviour hold for any R, but it influences convergence and stability through the
ratio T = R/Ω in the constants E(T ) and a(%, T ), and implicitly in D(NΛ, NΩ).
In this section we summarize the influence of this parameter on convergence,
resolution power, and conditioning of the FE problem.

First note that the Fourier extension constant E(T ) grows with T . For functions
analytic in a sufficiently large region, the convergence rate ρ = min(ρ∗, E(T ))
is limited by this constant. Thus E(T ) can be understood as a singularity
that is introduced by the mapping in (2.28). For sufficiently analytic functions,
increasing T thus increases the convergence rate, and vice versa. In particular,
as E(T )→ 1, the FE approaches the regular Fourier series and suffers from the
Gibbs phenomenon, limiting convergence speed.
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The resolution power of a scheme, first studied by Gottlieb and Orszag [46]
is a measure of the amount of point samples needed to resolve an oscillatory
function to a certain precision.

Definition 2.27. Let

R(ω, δ) = min{NΛ ∈ N : ‖eiπωx − PNΛ(eiπωx)‖∞ < δ}, ω > 0,

for some small δ. Then PNΛ has a resolution constant r if

R(ω, δ) ∼ rω, ω →∞.

For regular Fourier series, this constant has the optimal value 2. For Chebsyhev
polynomials this value is π. A theoretical argument shows that for the continuous
FE this resolution constant increases with T [2]. More specifically,

r(T ) ≤ 2T sin
( π

2T

)
, T ∈ (1,∞).

Thus, for T ≈ 1 the resolution constant r(t) ≈ 2T is close to optimal. When T
tends to infinity, r(T ) ∼ π. It is even possible to optimally balance convergence
speed with resolution power when aiming for a predetermined accuracy εtol.
This is achieved by varying T with NΛ, specifically

T (NΛ, εtol) = π

4

(
arctan(εtol)

1
2NΛ

)−1
. (2.29)

Although no equivalent analysis exists for the discrete FE, there have been
several attempts to determine FE parameters that are in some sense optimal.
In [15], Bruno et al. suggest the values T = 2 and % = 2 as a general rule of
thumb, but at the same time note that the optimal parameters are heavily
function dependent. Note that increasing both the extension length T and the
oversampling % will likely increase the resolution constant r. Especially since
it was shown in [2] that the limit r(T ) ∼ π as T → ∞ no longer holds for a
discretised FE, instead the resolution constant grows as r(T ) ∼ 2T . Even though
this was only observed for data points distributed as a variant of Chebyshev
points, it is indicative that the resolution constant for T = 2, % = 2 will be
considerably above the optimal value.

The precise interplay between T and % on the one hand, and resolution power
and conditioning on the other hand was studied in detail by Adcock and Rua [5].
They found that the condition number κ(PNΩ,NΛ) of the equispaced discrete
FE depends only on the product T%. Increasing either will lower the condition
number. Thus as long as % is increased or decreased accordingly when varying
T , the conditioning of the FE mapping remains constant. This is cited as an
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argument to limit T to 2, to profit from the at the time only available fast FE
algorithm [69].

Furthermore, the resolution constant is also dependent on the product T%,
growing as r(T ) ∼ T%. This illustrates the tradeoff between resolution power
and conditioning. Numerical experiments in [5] showed that by allowing the
condition number to grow from κ ≈ 10 to κ ≈ 100, the resolution constant was
halved, while further increasing κ had very little additional value. However, it
should be noted that these experiments were only carried out for T = 2. Lifting
the restriction on T may thus offer more flexibility in finding a balance between
resolution power and conditioning.

An interesting open problem raised in [5] is the possibility to vary T with
M , to achieve optimal resolution power in a manner similar to (2.29). Due
to the lack of a fast algorithm, any gains from varying T were considered of
limited practical usability compared to the fast algorithm for T = 2. The fast
algorithms presented in this thesis warrant a closer look at the possible benefits
from this method.

2.4 FE as a method for differential equations

A lot of the interest in FEs stems from using it as a building block in ODE and
PDE solvers. The use of the Fourier basis has obvious advantages, since taking
derivatives is an elementwise operator on the coefficients. Taking the Fourier
series on L2

[a,b] as in §1.2.1,

f ′ =
∞∑

k=−∞
f̂ [k]

(
e ikπx
b−a

)′
=

∞∑
k=−∞

ikπ
b− a

f̂ [k]e ikπx
b−a .

Fourier-based spectral methods are therefore popular, but mostly when the
setting is smooth and periodic. The otherwise slow convergence due to the
Gibbs phenomenon limits the usability. Using the Fourier Extension technique
eliminates the periodicity requirements.

Bruno and Pohlmann used this to their advantage in higher dimensions to obtain
smooth and periodic extensions around boundaries of complicated surfaces. This
was the basis for the very efficient FC-Gram method for approximations and
solving differential equations, using 1D Fourier extensions combined with an
ADI approach [16, 72, 6]. In this method they do not compute PNΩ,NΛf , which
in their naming scheme is the FC(SVD) method, but instead use precomputed
extensions based on Gram polynomials, that are matched to the data at the
ends of the interval. This leads to a scheme of high, but finite order.
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The FE method is closely related to embedded or fictitious domain methods for
solving certain partial differential equations using Fourier basis functions, the
main difference being the approximation in the extension region. In embedded
domain methods the function is explicitly extended outside the domain of
interest, e. g. through convolution with Gaussian kernels [17] or using polynomial
corrections [82]. In the Fourier extension technique, the approximation in the
extension region is determined implicitly through solving a least squares problem.





Chapter 3

Fast algorithms for the
one-dimensional Fourier
Extension

In this chapter we formulate two distinct fast O(NΛ log2NΛ) algorithms for
the computation of a one-dimensional Fourier Extension from oversampled
equispaced points, following §2.1. Most of this chapter was previously published
as [73].

3.1 Existing approaches

The need for a dedicated algorithm becomes apparent when trying to solve a
least squares system such as (2.9) and (2.6) using more general linear algebra
methods. The most straightforward approach to the regularised projections is
to calculate the SVD directly, and explicitly form the truncated pseudo-inverse
(1.23). The cost of this Singular Value Decomposition is O(N3

Λ) with constant
oversampling. For larger NΛ this quickly becomes unfeasible.

A possible solution is the use of iterative methods such as LSQR [80], since
a single iteration consists of applying A and A∗ and can be performed in
O(NΛ logNΛ) operations. However, the estimate for the residual after m
iterations is

‖Axm − b‖ ≤
(
σ1 − σn
σ1 + σn

)m
‖Ax0 − b‖, (3.1)

49
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with xm the solution at step m and σ1 ≥ σ2 ≥ · · · ≥ σNΛ the singular values of
A. Per the previous chapter, the matrix A from (2.9) is severely ill-conditioned
even for moderate NΛ. Although different alterations can be made to the
iterative routines to deal with nearly singular matrices, see [8] for an example,
all these methods have great difficulty dealing with the smallest singular values.

We further note that solving the ill-conditioned system using a general solver
like matlab’s backslash may return something closer to PτNΩ,NΛ

than PNΩ,NΛ .
The method matlab selects to solve this least squares system is the pivoted
QR method [45], that has implicit regularisation of near singular systems. Even
though this is a very straightforward approach, it has the same O(N3

Λ) cost as
the SVD.

A O(NΛ log2NΛ) fast algorithm was presented in [69] by Lyon for the specific
case where T = R/Ω = 2. The algorithm is based on the observation that the
singular values of A behave as in Fig. 2.2, clustering near 1 and then falling
rapidly. Based on symmetries present when T = 2, the solution was decoupled
into the sum of a sine series and a cosine series. Using several projectors, it was
shown suitable sine series coefficients can be found by solving a low-rank system,
with rank observed to be O(logNΛ). The coefficients of the cosine series then
follow from a single application of the DCT.

The algorithms from the following sections, though motivated differently, have a
similar structure to that in [69]. The singular value distribution lends itself to a
decoupling of the problem into a subproblem with low rank, and a subproblem
with good conditioning.

3.1.1 Randomised algorithms for low rank systems

The low-rank system in [69] was solved using a randomised approach, that
is well suited for systems with low-rank that are sparse, or where the system
matrix A can be applied efficiently [68, 108]. The algorithm consists of applying
A to r random vectors, collected in W . They showed that if r = rank(A) + k,
then the range of Ã = AW is equal to the range of A with probability extremely
close to 1, being 1− 1e−17 when k = 20. They then proceed by calculating an
SVD of the matrix Ã and using that to construct an approximate pseudo-inverse
of A. The solution is then obtained by multiplying the intermediate solution
with W . The algorithm is outlined in Algorithm 1, with the computational
cost for each step. It is assumed that A is an NΛ × NΛ matrix that can be
applied in O(NΛ logNΛ) operations, with rank(A) � N . The computational
complexity is O(NΛr

2 +NΛr logNΛ). If r is constant, this algorithm operates
in O(NΛ logNΛ) operations. If r = O(logNΛ), as will be the case in §3.4, the
cost is O(NΛ log2NΛ).
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Algorithm 1 Solution of Ax = b, where A has rank r.
W = rand(NΛ, r + 20) . O(NΛr)
Ã = AW . O(rNΛ logNΛ)
USV ∗ = ÃW . O(NΛr

2)
y = V (S†τ (U∗b)) . O(NΛr)
x = Wy . O(NΛr)

3.2 Isolating the plunge region

In this chapter we focus on the one-dimensional case, and we assume R = [−T, T ]
and Ω = [−1, 1]. From §2.1, the FE matrix is

Akj = 1√
NR

φj(xk), φj(x) = eijxπ/T .

The SVD of this matrix can be expressed in terms of the P-DPSS

A = UΣV ∗, ui = ϕΩ,Λ,i, vi = ϕΛ,Ω,i. (3.2)

The cost of this full SVD is prohibitively large, so to improve upon this cost two
subproblems are identified and solved in succession. The key to this division is
in the distribution of the singular values µ, as shown in Fig. 2.2. Recall from
§2.1 that for a specific τ there are three distinct regions:

• A region Iα := {µ : 1 > µ > 1 − τ} where all singular values are 1 up
to a tolerance τ . This region contains approximately NΩNΛ/NR singular
values.

• A region Iβ := {µ : 1− τ ≥ µ > τ}, also referred to as the “plunge region”.
This region grows as O(logNΛ), as NΛ →∞.

• A region Iγ := {µ : τ ≥ µ > 0} where the singular values further decay
exponentially.

Recall the subdivision of the Singular Value Decomposition from §2.1

A =
[
Uα Uβ Uγ

] Σα
Σβ

Σγ

 [Vα Vβ Vγ
]∗
.

Since Iγ contains exactly those singular values below the cutoff τ , the T-SVD
solution to the problem Ax = b with truncation parameter τ is then

x = xα + xβ = VαΣ−1
α U∗αbα + VβΣ−1

β U∗βbβ . (3.3)
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where the inverse operator applies to the diagonal elements. The right hand
side is split along the orthogonal spans of Uα, Uβ and Uγ , i.e.,

bα = UαU
∗
αb, bβ = UβU

∗
βb, bγ = UγU

∗
γ b.

Note that the T-SVD method implicitly requires

‖bγ‖/‖b‖ < τ. (3.4)

If this is not satisfied, b is not in the numerical range of A. In this case, we say
the Fourier extension has not yet converged, and NΛ should be increased. We
further require b to satisfy the so-called discrete Picard condition in ill-posed
problems [53].

Definition 3.1. Let γi = u∗i b be the inner product of the singular vectors with
the right hand side. Let τ be the truncation parameter. Then b is said to satisfy
a Discrete Picard condition if for all µi > τ the corresponding γi decay to zero
faster than the µi, on the average.

This together with (3.4) guarantee existence of a solution x with reasonable
norm compared to b, such that ‖Ax− b‖ < τ . This relates to Theorems 1.17
and 1.20, in that convergence is dependent on the existence of a solution with
small norm. We will return to this condition in §3.6.

(3.3) splits the problem into two orthogonal subproblems. The solution
corresponding to the plunge region singular vectors xβ can be found
independently from xα. Once it has, obtaining xα is then straightforward,
based on the following observation:

A∗(b− bβ) = VαΣαU∗αbα + VγΣγU∗γ bγ

= VαΣ−1
α U∗αbα +O(τ)

= xα +O(τ).

The bγ term, which is already assumed to be negligible, is fully eliminated by
the additional O(τ) factor Σγ . Noting that due to the definition of Iα

Σα = Σ−1
α +O(τ),

xα can be found at the cost of a single (fast) multiplication with A∗

(O(NΛ logNΛ)). The two approaches given in §§3.3 and 3.4 differ in how
they isolate Vβ ,Σβ and Uβ from the plunge region and how they efficiently
calculate xβ .
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3.3 Explicit eigenvectors

Due to the intrinsic connection of the FE problem with DPSS, it is possible to
explicitly compute Uβ ,Σβ and V ∗β . The second order difference equation from
(2.23) implies that

ZNΩ,NΛϕNΩ,NΛ,i = θiϕNΩ,NΛ,i, ZNΩ,NΛ =


c0 b1

b1 c1
. . .

. . . . . . bNΛ−1
bNΛ−1 cNΛ−1


bk = sin

(
πk

NR

)
sin
(
π(NΩ − k)

NR

)

ck = − cos
(
π(2k − 1−NΩ)

NR

)
cos
(
πNΛ
NR

)
.

The P-DPSS can thus be found as eigenvectors of a tridiagonal matrix. The
ϕNΩ,PΛ,i that make up U in (3.2) are eigenvectors of ZNΩ,NΛ . The dual matrix
ZNΛ,NΩ yields the right singular vectors V . With the P-DPSS known, the
original singular value µi is found in O(NΛ logNΛ) operations as

µi = ϕ∗Ω,Λ,iAϕΛ,Ω,i

This approach is already in use for the regular DPSS [48, 57].

To find xβ however, we are only interested in a subset of the singular values and
vectors. Since the number of singular values in the plunge region grows only
logarithmically, we require algorithms that calculate k specific eigenvalues and
eigenvectors of a tridiagonal matrix Z in O(kNΛ) operations [31, 30]. Algorithms
for this computation require as input for the desired eigenvalues θi of Z either:

• A range [C1, C2]. The algorithm then finds the set

{(vi, θi) : C1 ≤ θi ≤ C2, Zvi = θivi}

• An index set {imin, . . . , imax}. The algorithm then finds

{(θi, vi) : θimin ≤ θi ≤ θimax , Zvi = θivi},

from the ordered set θ0 ≥ θ1 ≥ . . . .

The algorithms thus require knowing the θj , or alternatively the indices j, that
correspond to µ ∈ Iβ . Denote the mappings between µi and θj , and between
their indices i and j, by
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θj =MNΛ,NΩ(µi), j =M∗NΛ,NΩ
(i)⇔

{
ϕ∗iZNΛ,NΩϕi = θj

ϕ∗iANΛ,NΩϕi = µi.

Getting a qualitative understanding of MNΛ,NΩ is difficult, as very little is
known of this mapping. We will only show monotonicity, a trait shared with
the PSWF and DPSWF equivalents (recall from (2.17) and Property 2.11 that
these also satisfy second order diffferential or difference equations, with different
eigenvalues). The monotonicity property is already very helpful, since it implies
thatM∗PΛ,NΩ

(i) = i.

Theorem 3.2. If NΩ ≥ NΛ, the mappingM′NΛ,NΩ
is monotone,

∀i1, i2 : i1 > i2 ⇔M∗NΛ,NΩ
(i1) >M∗NΛ,NΩ

(i2).

Proof. The proof follows a mechanism used by Slepian in both [91, p. 61] and
[89, §4.1]. The continuity of eigenvalues and eigenvectors as a function of a
parameter, combined with a known ordering result for a specific value of this
parameter, extends the known result to all parameter values.

First we recall a similar result from the continuous Fourier Extension. Let GNΛ

be the Gram matrix from the continuous FE problem (2.6) with eigenvalues λi,
and χNΛ the tridiagonal matrix (3.5) with eigenvalues θ̄i, i = 1, . . . , NΛ

χNΛ =


c̄0 b̄1

b̄1 c̄1
. . .

. . . . . . b̄NΛ−1
b̄NΛ−1 c̄NΛ−1

 , (3.5)

c̄i =
(
NΛ − 1

2 − i
)2

cos π
T
, b̄i = i(NΛ − i)

2 . (3.6)

Then the mapping M̄′

j = M̄∗(i)⇔
{
ψ∗i χNΛψi = θ̄j

ψ∗iGNΛψi = λi

was proven to be monotone in [89, §4.1]. This result can be extended to the
discrete FE case, since the limits of the entries of A∗A and ZNΛ,NΩ for large
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NΩ can be written in terms of the corresponding matrices of the continuous
problem:

lim
NΩ→∞

(A∗A)ij =
sin (i−j)π

T

π(i− j) = (GNΛ)ij

lim
NΩ→∞

bk = π2k(NΛ − k)
N2
R

= 2π2

N2
R

b̄k

lim
NΩ→∞

ck = cos π
T

(
2π2

N2
R

(
NΛ − 1

2 − k
)2
− 1
)

= 2π2

N2
R

c̄k − cos π
T

lim
NΩ→∞

ZNΩ,NΛ = 2π2

N2
R

χNΛ − cos π
T
I

The last line ensures that the eigenvalues of ZNΩ,NΛ are those of χNΛ under
a linear mapping. Since this mapping preserves the ordering of eigenvalues,
the theorem holds in the limit NΩ →∞. Further, when limited to the regime
T > 1, NΩ ≥ NΛ, we have the following:

1. The tridiagonal matrix ZNΩ,NΛ(NΩ) with diagonal elements ck and
subdiagonal elements bk commutes with A∗A for integer values of NΩ.
However, by a substitution as in [20, Thm. 4.7], it is easy to see that this
relationship holds for any real NΩ > NΛ.

2. A classical result states that the eigenvalues of a matrix are continuous as
the matrix entries vary continuously in the parameter. Thus all θi(NΩ)
are continuous. In general they may coincide with each other. However,
since all subdiagonal entries are always non-zero,

b2k > 0, 1 ≤ k ≤ NΛ − 1

ZNΩ,NΛ(NΩ) is a so-called normal Jacobi matrix and such matrices are
known to have distinct eigenvalues [42, Ch. 2.1]. As a result of this
distinctness, the eigenvectors can be chosen to be continuous in NΩ as
well [64, Ch. 2 §5.3].

3. To prove similar statements for the matrix A∗A, we note that the inductive
proof in [110, Prop. 5] for the distinctness of eigenvalues of A∗A is
dependent only on it being symmetric, and the commuting ZNΩ,NΛ(m)
being a normal Jacobi matrix. The eigenvalues µi(NΩ) are thus continuous
and distinct ∀NΩ ≥ NΛ. Then the eigenvectors can also be chosen
continuous in NΩ.
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Combining these statements, the distinctness preserves the relative ordering
of the continuous eigenvalues. The continuity of the eigenvectors relates the
eigenvalues of A and ZNΛ,NΩ through the mapping M′. Since this mapping
is monotone in the limit NΩ → ∞, the continuity ensures the mapping is
monotone for all NΩ ≥ NΛ.

The required index set for the eigenvalues of ZNΩ,NΛ is exactly the index set
corresponding to µi from the plunge region. From Property 2.15 these are
known to be centered around NΛNΩ

NR
, and their number grows as O(logNΛ). All

that remains is to determine the constants Cmin and Cmax so that

µj ∈ Iβ ⇔ j ∈
[
NΛNΩ
NR

− Cmin logNΛ,
NΛNΩ
NR

+ Cmax logNΛ

]
.

We denote the minimum and maximum indices as jmin and jmax. The minimum
required index set [jmin, jmax] with cutoff τ = 1e−16 for increasing NΛ is shown
in Figure 3.1, with the value NΛNΩ

NR
as a dashed line. Experimentally, the choices

Cmin ≥ 6 and Cmax ≥ 3 are deemed sufficient for all τ ≥ εmach. This is slightly
more optimistic than the best known nonasymptotic bounds in [111]. The Vβ
can be obtained by refining A∗ϕNΩ,NΛ,i as eigenvectors of ZNΛ,NΩ .

Using a fast tridiagonal eigenvector algorithm, Uβ , Σβ and Vβ can be computed
in O(NΛ log2NΛ) operations. The solution term

xβ = VβΣ−1
β U∗βb

is then found in O(NΛ log2NΛ) operations.

Remark 3.3. Monotonicity of the mapMNΛ,NΩ is also observed to hold for
integer NΩ smaller than integer NΛ. Specifically, a variant of Theorem 3.2 holds
for the NΩ nonzero singular values µi. The same index set can thus be used to
compute both Uβ and Vβ with a fast tridiagonal eigenvalue algorithm. However,
this mapping is unproven.

Combining xβ with the calculation of xα described at the end of §3.3, the end
result is a fast O(NΛ log2NΛ) algorithm. A bare-bones version incorporating
Remark 3.3 is given in Algorithm 2. The trideig function should return
eigenvectors of a tridiagonal matrix given an index interval, e.g. the lapack
routine dstevx, and are found at a cost of O(NΛη(τ,NΛ)) operations for η(τ,NΛ)
eigenpairs [30].

Figure 3.2 shows the different stages of the algorithm, which easily relates the
intermediate results to the projection on the P-DPSS shown in Fig. 2.3. The
coefficients xβ are the orthogonal projection onto the plunge region singular
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Figure 3.1: The behaviour of the index set of the plunge region. The minimal
and maximal index of the plunge region are shown as solid lines, for different
values of T . The point NΛNΩ/NR, which is known to lie in the interval, is
shown as a dashed line.

Algorithm 2 Explicit calculation of P-DPSS
Uβ =trideig(ZNΩ,NΛ , {jmin , jmax }) . O(NΛ logNΛ)
Vβ =trideig(ZNΛ,NΩ , {jmin , jmax }) . O(NΛ logNΛ)
Σβ = U∗βAVβ > τ . O(NΛ log2NΛ)
xβ = VβΣ†β,τU∗βb . O(NΛ logNΛ)
xα = A∗(b−Axβ) . O(NΛ logNΛ)
x = xα + xβ . O(NΛ)

vectors, and approximates the function well at the boundary, since P-DPSS
corresponding to both Iα and Iγ are small there. The residual b−Axβ therefore
smoothly vanishes at the boundaries. Since A∗ is equivalent to extending by
zero and taking the Fourier transform on the interval [−T, T ], xα is obtained
immediately.

3.4 An implicit algorithm

The second approach to calculating xβ is more general, since it depends solely
on the steep singular value profile associated with Prolate Spheroidal Wave
functions and their generalisations, illustrated in Fig. 2.2. As such, it is extensible
to any frame or ill-conditioned Riesz basis that exhibits a similar profile.

This algorithm finds a solution xβ as in (3.3), without explicitly computing the



58 FAST ALGORITHMS FOR THE ONE-DIMENSIONAL FOURIER EXTENSION

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

2

4

6

x

f

TNxβ

(a) TNxβ(x)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

2

4

6

x

f

TNxα

(b) TNxα(x)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

2

4

6

x

f

TN (xα + xβ)

(c) TN (xα + xβ)(x)

Figure 3.2: Illustration of the different intermediate results in Algorithm 2. xβ
represents the solution at the boundary. The residual then vanishes smoothly
at the boundary, yielding xα through extension by zero and the FFT.
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Vβ , hence the name. It is based on the observation that multiplying both the
FE matrix A and right hand side by a factor

P = (AA∗ − I) (3.7)

isolates the problem to the plunge region. This is easily seen from the SVD.
With A = UΣV ∗ we have

P = U(Σ2 − I)U∗, (3.8)

and
PA = U(Σ3 − Σ)V ∗.

Note here that the mapping

W(µ) = µ3 − µ

isolates the singular values from the plunge region since ∀µ ∈ {Iα∪Iγ} :W(µ) =
O(τ). This way, PA preserves the singular vectors of just the plunge region,
but with mapped singular values

PA = Uβ(Σ3
β − Σβ)V ∗β +O(τ). (3.9)

In theory, P is a square full rank matrix, and solving

PAx = Pb (3.10)

is equivalent to solving Ax = b. In practice, PA has a large numerical nullspace.
Hence, PA is approximately low rank, with the rank increasing with the size of
the plunge region. The combination of this low rank with a fast matrix-vector
product allows random matrix algorithms as in §3.1.1 to solve (3.10) very
efficiently.

AssumeW a uniform random matrix of dimensions NΛ×r, where r = C logNΛ+
D is a conservative estimate for the rank of PA. From the previous section,
C = Cmin +Cmax ≥ 9 is sufficient, with D ∼ 20 ensuring a negligible probability
of failure of the random matrix algorithm. Solving the following small linear
system

PAWy = Pb

and letting
xW = Wy

one obtains a solution to (3.10) a cost of O(NΛr
2). It follows from (3.9) that

xβ is recovered to high accuracy, with high probability. On the other hand, this
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solution process introduces additional solution terms from the nullspace of PA.
Write xW as xβ + sα + sγ . Then as before we calculate

A∗(b−AxW ) = A∗(bα −Asα −Asγ) +O(τ)

= xα − sα − VγΣ2
γV
∗
γ sγ +O(τ)

= xα − sα +O(τ).

Then x = xW +A∗(b−AxW ) reduces to

x = xα + xβ + sγ +O(τ).

so that ||Ax− b|| = O(τ). See §3.6 for a more precise characterisation of the
residual. The total cost of this algorithm is again O(NΛ log2NΛ) operations.
A pseudocode version is given in Algorithm 3. Note the similarities to both
Algorithm 1 and Algorithm 2.

Algorithm 3 Implicit projection on P-DPSS
W = rand(NΛ, r + 20) . O(NΛr)
Ã = (AA∗ − I)AW . O(rNΛ logNΛ)
USV ∗ = Ã . O(NΛr

2)
y = V (S†τ (U∗((AA∗ − I)b))) . O(NΛr)
xW = Wy . O(NΛr)
xα = A∗(b−Axβ) . O(NΛ logNΛ)
x = xα + xβ . O(NΛ)

Figure 3.3 shows an interpretation of the intermediate results similar to Fig. 3.2.
However, here xW is seen to contain elements from the numerical nullspace of
PA. The solution at the boundary is still recovered exactly, and the residual
thus vanishes at the boundary. The nullspace elements corresponding to Iγ
persist in the solution, but do not influence accuracy on Ω = [−1, 1].
Remark 3.4. Algorithms 2 and 3 have a pre-computational step that
approximates A†τ in some sense, the first three steps in both cases. The right
hand side is only introduced into the computation after this pre-computation.
Notably, these last steps have a complexity of only O(NΛ logNΛ). Storing an
approximate decomposition of Aβ in memory can thus provide a significant
speedup when multiple right hand sides need to be approximated.

3.4.1 Adaptation for the continuous FE

From section 2.2.2, the continuous FE has connections with Prolate Spheroidal
Wave theory as well. In particular, the eigenvalues λi have a similar profile to
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Figure 3.3: Illustration of the different intermediate results in Algorithm 3. xW
represents the solution at the boundary, with added elements from the nullspace.
As before, the residual vanishes smoothly at the boundary.
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that of Fig. 2.2. Our second approach thus applies immediately, and Algorithm 3
is well suited to solve the continuous FE problem. Note however that this does
not eliminate the theoretical O(

√
τ) error bound.

Furthermore, these DPSS also satisfy a second order difference equation, different
from (2.23). In particular, the matrix GNΛ commutes with the tridiagonal matrix
(3.5). It follows that, with minor modifications, Algorithm 2 can also be used
to solve the continuous FE problem.

3.5 Numerical Results

In this section we apply the algorithms from the previous sections to a number
of test problems. Most tests were performed in julia, as described in Chapter
6. The timing test was performed in matlab, single threaded, to compare with
matlab implementations of other algorithms. The required fast matrix-vector
products Ax and A∗y were implemented using ffts, and the lapack routine
dstevx was used for the tridiagonal eigenvalue problem.

To show the validity of our algorithms for different values of T , experiments are
carried out for

T1 = 1.1, T2 = 2, T3 = 3.8.

Following [5], the product NR = 2TγNΛ is held constant when varying T in
order to maintain a fixed condition number. This means the oversampling
% = NΩ/NΛ varies between experiments. The cutoff was τ = 10−14 unless
mentioned otherwise.

3.5.1 Computational complexity

Figure 3.5.1 shows execution time for increasing degrees of freedom of the
algorithm for different values of T . The figure confirms the O(NΛ log2NΛ)
asymptotic complexity of our algorithms. It also shows execution speed is on
par with the previous fast algorithm [69].

3.5.2 Convergence

The accuracy of the solution obtained through our algorithms is shown in
Figs. 3.5 to 3.8. Algorithm 2 is shown in dashed green lines, Algorithm 3 in
solid blue lines. The accuracy is measured as both the maximum pointwise
error over an equispaced grid, sampled ten times denser than the one used for
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Figure 3.4: Execution time for increasing degrees of freedom NΛ, for the explicit
and implicit algorithms (Algorithms 2 and 3), the algorithm by Lyon [69] and a
direct solver.

construction, and the relative residual error when solving the system. This is
measured for increasing number of degrees of freedom NΛ for four test functions:

• A well-behaved, smooth function to show convergence in near optimal
conditions,

f1(x) = x2.

• An oscillatory function, to show the resolution power of Fourier extensions
for oscillatory functions,

f2(x) = Ai(67x).

• The Runge example, a function with two poles in the complex plane at
±i/5. This function is notoriously difficult to interpolate in equispaced
points using polynomials,

f3(x) = 1
1 + 25x2 .

• A function with a discontinuity, to test convergence in this case,

f4(x) =
{

1 x ≥ 0
0 x < 0

.
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The convergence behaviour seen is in accordance with the results from [59, 4, 5],
as summarised in §2.3.2. For T = 2, it also very closely agrees with the Lyon
algorithm (not shown). Convergence for functions analytic in [−1, 1] is at least
geometric (Fig. 3.5), even when singularities are present near the real interval
(Fig. 3.7). Following the earlier arguments about resolution power from 2.3.3,
Fourier extensions of oscillatory functions start to converge sooner for lower
values of T (Fig. 3.6). Note that this is in terms of degrees of freedom NΛ, and
that we increased the oversampling for lower T to maintain conditioning.

When the function has a discontinuity the Fourier coefficients decay as O(NΛ).
Following §1.2 we expect no pointwise convergence, as is seen in Fig. 3.8b. The
residual is an approximation to the L2 norm, and shows O(N−1/2

Λ ) convergence
as expected (Fig. 3.8a).

3.5.3 Robustness

To ensure the algorithms are robust for large NΛ, Figs. 3.9a and 3.9b show
successive approximations of

f(x) = sin(10x)

and
f(x) = sin(NΛx/2), (3.11)

with the error measured as the relative residual. Figure 3.9a shows that at
least for Algorithm 3, the residual stays near τ when increasing the frequency.
Figure 3.9b shows the approximation of an increasingly oscillatory function that
is right at the limit of the approximation power. For T = 3.8, the maximum
frequency in the Fourier basis is lower than the frequency of the signal for every
NΛ, so there cannot be any convergence. For the other values of T the error
stays close to τ , but increases slightly with NΛ. One possible explanation lies
in the constant cf in Theorem 2.24 that determines the accuracy at the point
where geometric convergence breaks down and superalgebraic convergence sets
in. This constant is function-dependent, and grows with NΛ for (3.11). See also
[1, Proposition 5.8], where the Sobolev norm of the approximant appears in
the error estimates directly. However, further research into highly oscillatory
functions is needed.

3.6 Influence of noise

In this last subsection we perform a slightly more thorough error analysis on
Algorithm 3 than that of §3.4, that was published in [73]. In exact arithmetic,
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Figure 3.5: The residual norm of the system, and L∞ norm of the error,
computed by oversampling the solution by a factor 10, for test function f1(x) =
x2.
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Figure 3.6: The residual norm of the system, and L∞ norm of the error,
computed by oversampling the solution by a factor 10, for test function f2(x) =
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Figure 3.7: The residual norm of the system, and L∞ norm of the error,
computed by oversampling the solution by a factor 10, for test function f3(x) =

1
1+25x2 .



68 FAST ALGORITHMS FOR THE ONE-DIMENSIONAL FOURIER EXTENSION

101.5 102.0 102.5 103.0 103.5 104.0

10−2.2

10−2.0

10−1.8

10−1.6

10−1.4

10−1.2

10−1.0

NΛ

‖A
x
−

b‖
/
‖b
‖

T=1.1
T=2

T=3.8

(a)

101.5 102.0 102.5 103.0 103.5 104.0
10−0.25

100.00

100.25

100.50

100.75

101.00

101.25

NΛ

‖F
−

f
‖ ∞

T=1.1
T=2

T=3.8

(b)

Figure 3.8: The residual norm of the system, and L∞ norm of the error,
computed by oversampling the solution by a factor 10, for the Heaviside test
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the error is

‖A(xα + xβ)− b‖ = ‖P (Axβ − b)‖.

The error in Algorithm 3 is then the same as the error made in solving the first
system. Using the T-SVD of PA with cutoff τ , xβ = (PA)†τPb, the error is

‖P (Axβ − b)‖ =
∑

µ3
i
−µi<τ

|µ2
i − 1||u∗i b|.

Now µi − µ3
i < τ implies either µi > 1− τ/2 +O(τ2) or µi < τ +O(τ3). Then

since we assumed ‖bγ‖ =
∑
µi<τ
|u∗i b| ≤ τ‖b‖ under (3.4), we have for small τ

‖P (Axβ − b)‖ =
∑
µi<τ

|µ2
i − 1||u∗i b|+

∑
µi>1−τ/2

|µ2
i − 1||u∗i b|

≤ 2τ‖b‖+O(τ2). (3.12)

However, this is for exact arithmetic, and there are several possible sources
of error. There could be noise in the function samples, present on the right
hand side b. This could either be signal noise, or a sign that the scheme has
not yet converged. There is also the error in solving a system involving PA,
using a randomised singular value decomposition. And there is the possibility
of round-off error.

3.6.1 Approximate SVD

We first take a closer look at the randomised SVD from §3.1.1. An error bound
for this approximation was first derived in [52] and proved sharp in [107].

Theorem 3.5. [107, Theorem 1.4] Let A be a matrix with singular values
µ1 ≥ µ2 ≥ . . . . Let W be a n × l sampled test matrix with independent,
mean-zero, unit-variance Gaussian entries and l = k+p for integers k and p. If

Ũ Σ̃Ṽ ∗ = AW

then

E‖A− Ũ Ũ∗A‖ ≤

(
1 +

√
k

p− 1

)
µk+1 + e

√
k + p

p

(∑
i>k

µk

)1/2

. (3.13)

Here the norm ‖A‖ is the matrix 2-norm, given by the largest singular value.
E‖ · ‖ is the expected value of this 2-norm. This theorem relates the expected
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error of in approximating the range of A to the quality of our rank estimate k,
i. e. the singular values smaller than µk. Furthermore, following [52, Corollary
10.9], the probability that ||A− Ũ Ũ∗A|| does not satisfy a slightly scaled (3.13)
is at most 3e−p. This motivates our choices of k and p from §3.4. If the singular
values µi decay sufficiently fast, and p is proportional to k, the error bound in
Theorem 3.5 can be expressed as a constant times µk+1.

In the following we denote by Ũ Σ̃Ṽ ∗ the calculated svd. Denote by δA the
additive error made in this computation, either through round-off or because of
Theorem 3.5:

Ã = A+ δA, Ũ Σ̃Ṽ = Ã.

Then the following theorems due to Weyl and Mirsky relate the error E to the
perturbation of the singular values σ.

Theorem 3.6. [104] Let µ1 ≥ µ2 ≥ . . . denote the singular values of A, and
µ̃1 ≥ µ̃2 ≥ . . . the singular values of Ã = A+ δA. Then for any δA

|µ̃i − µi| ≤ ‖δA‖2.

Theorem 3.7. [76] Within the setting of Theorem 3.6,√∑
i

(µ̃i − µi)2 ≤ ‖δA‖F .

In this last theorem the norm ‖ · ‖F is the Frobenius norm

‖A‖F =
√∑

i,j

|aij |2.

Theorems 3.6 and 3.7 show that finding the singular values of a matrix is a
well-conditioned problem, since the singular values never deviate more from
their exact value than by the magnitude of the error. However, this does not
mean that every singular value can be accurately computed. For small µi, the
relative error might be high. Note that for some matrix classes algorithms exist
that allow (more) accurate SVDs, see e. g. [29].

With PA = UΣV ∗ the exact, and Ũ Σ̃Ṽ ∗ the calculated SVD, denote by δk the
error for the k-th singular value:

∀k : σ̃k = µ3
k − µk + δk. (3.14)

We now want to quantify the impact of replacing V Σ†τ̃U∗ by Ṽ Σ̃†τ̃ Ũ∗ in
Algorithm 3. If we assume the singular vectors are computed exactly, we
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have

x̃β = V Σ̃†U∗Pb =
∑
σ̃k>τ̃

vk
µ2
k − 1
σ̃k

u∗kb

and

x̃α = A∗(b−Ax̃β) =
∑
σ̃k>τ̃

vk

(
µk −

µ4
k − µ2

k

σ̃k

)
u∗kb.

With x̃ = x̃α + x̃β , this leads to

‖P (Ax̃− b)‖ =
∑
σ̃k>τ̃

∣∣∣∣ δkσ̃k
∣∣∣∣ ∣∣µ2

k − 1
∣∣ |u∗kbk|+ ∑

σ̃k<τ̃

|µ2
k − 1||u∗kb|,

=
∑
σ̃k>τ̃

∣∣∣∣ σkδk
σk + δk

∣∣∣∣+O(τ̃), (3.15)

where the last line follows from (3.12), and our assumption |u∗kb| < Cµk as
before. Now note that

max
σ̃k>τ̃

∣∣∣∣ σkδk
σk + δk

∣∣∣∣ ≈ δk (1 + δk
τ̃

)
,

obtained when σ̃k ≈ τ̃ − δk with δk negative. In other words, the worst case is
a singular value that is perturbed downwards to right above the cutoff τ . This
shows the importance of choosing τ̃ : it should be at the expected noise level
of the singular values, or larger. Otherwise the noise level gets amplified by a
factor δk/τ̃ .

This does not cover the complete algorithm: for that we would need to
characterise the singular vectors Ũ and Ṽ as well, more specifically how well
V ∗β Ṽβ and U∗βUβ approximate the identity. We only mention a possible approach
based on the most common perturbation result for singular vectors by Wedin
(see e. g. [94]). The angle between subspaces Ũ1 and U2 is bounded by the
inverse of the minimum separation between any diagonal element of Σ̃1 and
Σ2. In practice, this means singular vectors can only be accurately retrieved if
the corresponding singular values are well-separated. For σ̃k large the singular
vector will mostly be precise, with relative accuracy diminishing with σ̃k, and
generally being on the order εmach/σ̃k. The main difficulty in the analysis is
that sometimes µ3

k − µk ≈ µ3
j − µj , for µk close to 1 and µj close to zero. This

complicates the analysis considerably.
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3.6.2 Noise in the right hand side

The T-SVD solution is known to be robust to perturbations of b up to a noise
level σ0, under a few conditions.

Theorem 3.8. [55, Characterisation 2] Let xτ be the Truncated Singular Value
Decomposition solution of a system Ax = b. Let b = bexact + e, where e
has zero mean and covariance matrix σ2

0I, and b satisfies the discrete Picard
condition. Furthermore, let δ0 be the part of b that is outside the range of A,
δ0 = ‖(I − UUT )b‖. Then there exists a C so that for τ < C

‖Axτ − b‖ ≈
√
σ2

0(m) + δ2
0

A more detailed formulation can be found in [54].

If no a priori noise information is available, the best choice of cutoff paramter is
not obvious. A common approach in discrete ill-posed problems is utilizing the
so-called L-curve. That is, plotting the solution norm ‖x‖ versus the residual
‖Ax− b‖. When decreasing the cutoff, the residual decreases and the solution
norm increases. This curve, with both axes on a logarithmic scale, often has a
distinctive corner, and the sharpness of the corner depends on the decay rate of
the singular values [56]. For Fourier extensions the singular values are known
to decay rapidly, leading to a sharp corner.

In Fig. 3.10 a discrete FE approximation is computed of f(x) = cos(20x− 1.3)
with 500 degrees of freedom, and a cutoff ranging from τ̃ = 10−15 to τ̃ = 10−1,
where τ̃ is the cutoff for the T-SVD of PAW in Algorithm 3. The matrix W
is chosen large enough for the minimal singular value of PAW to be below τ̃ .
The results are shown for f perturbed at different (white) noise levels σ0 as in
Theorem 3.8. There is indeed an optimal cutoff parameter, where adding more
singular values to the solution only approximates the noise. Since the noise
does not satisfy the Discrete Picard condition, this increases the solution norm
but not the accuracy.

By varying the cutoff parameter and detecting this corner, the algorithm can
be made robust to noise.
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Figure 3.10: Residual versus solution norm for different noise levels. The data
points correspond to different values of the cutoff parameter τ̃ . The curve has a
distinct L shape, with the optimal solution found at the corner.



Chapter 4

Higher dimensional problems

This chapter details the extension of the algorithm described in §3.4 to the
higher dimensional setting. As before, we focus on the oversampled collocation
problem, using a Fourier extension frame.

The aim of the chapter is twofold. After defining equivalents to the P-DPSS
from Chapter 2, we prove an extension of Property 2.15 under mild conditions
for a two-dimensional domain Ω. This extension relates the growth of the plunge
region to a measure of the boundary of Ω. The second part of this chapter
details numerical experiments on the algorithm efficacy in two dimensions, in
terms of complexity, accuracy and robustness. Most of the contents of this
chapter are from [75].

4.1 Generalizing discrete Prolate Spheroidal wave
sequences

We recall the FE problem matrix in a multi-dimensional setting from Chapter
2. The collocation matrix A is NΩ×NΛ, with an implicit ordering of the points
xk ∈ PΩ, and the frequencies lk ∈ PΛ are in an nΛ × · · · × nΛ grid.

As before, the matrix A can be seen as the composition of three operations
in time and frequency: extending Λ to R̂ by zeros in the frequency domain,
applying a discrete Fourier transform and restricting the result to Ω in the time
domain. We shall develop this notion more formally.

75
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The operators operate on sequences of length NR on an nR × nR × . . . grid.
For indexing purposes we convert

PR =
{(

k1
nR

, . . . ,
kD
nR

)∣∣∣∣∀i : 0 ≤ ki < nR

}
, PΩ = PR ∩ Ω.

to the integer sets

IR = nRPR and IΩ = nRPΩ.

In accordance with §2.2, we denote by TΩ the discrete space-limiting operator
that sets all values outside Ω to zero,

(TΩ)k,l =
{

1, k = l ∈ IΩ,
0 otherwise. (4.1)

Similarly, the discrete operator BΛ is an NR̂ ×NR̂ bandlimiting operator that
eliminates all frequency content outside Λ. With F the D-dimensional Fourier
transform, BΛ = FTΛF

∗.

With these definitions, the matrix AA′ is the nonzero subblock of the operator
TΩBΛTΩ. Similar to the univariate case, the entries of TΩBΛTΩ are given in
terms of a convolution kernel

(TΩBΛTΩ)k,l = B(k− l), ∀k, l ∈ IΩ

where in the multivariate case B is a product of univariate Dirichlet kernels,

B(k) =
D∏
d=1

b(kd) (4.2)

b(k) = sin(πnΛk/nR)
nR sin(πk/nR) .

Here, k = (k1, k2, . . . ) is a multidimensional point, and D is the number of
dimensions.

Using these definitions for BΛTΩBΛ and TΩBΛTΩ, Definition 2.12 can be
extended to generalised, multidimensional P-DPSS. As before, the eigenvectors
of the Hermitian matrix BΛTΩBΛ are denoted by ϕi, and ϕ̆i = TΩϕi are
eigenvectors of TΩBΛTΩ. The corresponding eigenvalues of both matrices are
the same and denoted by µi.

Similar to Properties 2.13 to 2.19, the following properties can be shown for
the generalised P-DPSS:

Property 4.1. The eigenvalues are bounded above by 1 and below by 0.
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Property 4.2. Define the discrete inner products 〈ϕi, ϕj〉R = ϕi · ϕj and
〈ϕi, ϕj〉Ω = (TΩϕi) · (TΩϕj). The ϕi are doubly orthogonal with respect to these
inner products:

〈ϕi, ϕj〉R = δij , 〈ϕi, ϕj〉Ω = µiδij .

Property 4.3. The ϕi(Ω,Λ) are eigenvectors of the D-dimensional DFT, with
Ω and Λ interchanged.

TΛFϕi(Ω,Λ) = ϕ̆i(Λ,Ω),

where F is the D-dimensional DFT matrix.

Property 4.4. Consider the discrete (semi-)norms corresponding to Prop-
erty 4.2 ‖ · ‖R and ‖ · ‖Ω. Then among all multidimensional sequences of size
NR with frequency support in PΛ, ϕ1 is the one most concentrated in PΩ with
concentration 〈ϕ1, ϕ1〉Ω/〈ϕ1, ϕ1〉R = µ1. Similarly, among the sequences of
equal frequency support orthogonal to ϕ1, ϕ2 is the most concentrated in Ω.

Figure 4.1 shows the Fourier series corresponding to these generalised P-DPSS,
to be compared to Fig. 2.3. Property 4.4 is clearly illustrated: The maximal ratio
µ1 = ‖ϕ1‖Ω/‖ϕ1‖R with µ1 ≈ 1 means that ϕ1 is almost entirely supported
on Ω – this in spite of being compactly supported in the (discrete) frequency
domain. They are, after all, a finite Fourier series. Such a function is shown
in the left panel of Fig. 4.1. In contrast, the functions corresponding to small
eigenvalues are almost entirely supported on the exterior domain R − Ω, as
shown in the right panel of the figure. Finally, the middle functions with
eigenvalues in the plunge region are supported everywhere. This is illustrated
in the middle panel. In particular, these functions are the only ones that are
non-neglible in a neighbourhood of the boundary. This is a clear indication that
the plunge region is a phenomenon that relates to the boundary of the domain
at hand.

The solution to Ax = b using a truncated Singular Value Decomposition can be
expressed in terms of these generalised discrete Prolate Spheroidal sequences,

x =
∑
µi>τ

1
√
µi
ϕ̆i(Λ,Ω)〈f, ϕ̆i(Ω,Λ)〉Ω,

where the inner products are those from Property 4.2. This means Algorithm 3
is applicable to the multi-dimensional problem as well. The different stages of
the algorithm are illustrated in Fig. 4.2, for function samples b, to be compared
with Fig. 3.3.

The vector xβ ≈ VβΣ−1
β U ′βb found after the first step is based on the middle

singular values, which correspond to functions that are supported along the
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(a) µ60 ∼ 1− 10−10 (b) µ557 ∼ 0.54 (c) µ1300 ∼ 10−10

Figure 4.1: Fourier series TNϕi corresponding to ϕi for different values of the
eigenvalue µi.

boundary of the domain. The Fourier series with xβ as its coefficients is shown
in Fig. 4.2b: it approximates the data well in a neighbourhood of the boundary.
Subtracting this approximation from the original function yields a function
that vanishes smoothly towards the boundary of Ω. Hence, this function can
be extended by zero and approximated efficiently with a Fourier transform,
and that is expressed by the step xα = A′(b−Axβ). The vector xα is a linear
combination of the generalised P-DPSS that are concentrated in the interior
of the domain. The numerical null space of A corresponds to the generalised
P-DPSS concentrated in the exterior of the domain. Any such prolate can be
added to our solution but it will only affect the extension, not the approximation
on Ω itself, unless it is multiplied with a very large coefficient.

4.2 Singular value profile for generalised discrete
Prolate Spheroidal Sequences

Algorithm 3 is very general. In fact, it will provide an approximate T-SVD
solution for any linear system Ax = b. However, it only provides a speedup if
the matrix PA = (AA′ − I)A has low rank, or equivalently, if the plunge region
η(τ,NΛ) of A grows slower than NΛ. In the higher dimensional case, the cost
of applying the matrix A is still O(NΛ logNΛ). As we will show in this section,
the cost of Algorithm 3 is now dominated by the SVD of the matrix PAW ,
with a cost O(NΛη(τ,NΛ)2), that is lower than the full SVD cost O(N3

Λ).

As in [65, 106], a bound on η(τ,NΛ) can be inferred from trace iterates of the
operator TΩBΛTΩ. After bounding the difference between tr(TΩBΛTΩ) and
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(a) b (b) TNxβ

(c) TNxα (d) TN (xα + xβ)

Figure 4.2: Steps in algorithm 3: Data is given on Ω (Fig. 4.2a), approximated
using the eigenvalues 1− ε > µi > ε, and yields a good approximation on the
boundary (Fig. 4.2b). This solution subtracted from the data (Fig. 4.2c) is
easily approximated by a regular Fourier series on the bounding box (Fig. 4.2d).
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tr((TΩBΛTΩ)2), this bound is shown to be of the same order as η(τ,NΛ). We
formulate our final result in Theorem 4.17.

The bound hinges on two observations:

• The contribution of a single point in PΩ to tr(TΩBΛTΩ)− tr((TΩBΛTΩ)2)
is inversely proportional to the distance between that point and the domain
boundary.

• The number of points at a certain distance from the boundary is bounded
by the number of boundary points and some terms depending only on the
discrete domain topology.

The next section contains a concise illustrated proof of the second observation
in the two-dimensional case. The first observation is proven in §4.2.2. Due to
the discrete nature of the problem, we use some concepts borrowed from digital
topology, see [21] for an overview.

4.2.1 Distance away from the boundary for general 2D
domains

For reasons that will become clear later on, the metric of choice is the `∞
distance,

d(k, l) = max
i=1,...,D

|ki − li|.

A point k on a regular grid in two dimensions can have up to 8 neighbors at a
distance 1. We also define for each point set P a distance to its complement.

Definition 4.5. The distance of a point k to the complement of a set P is
given by

d(k;P ) = min
l/∈P
‖l− k‖∞.

Evidently it is true that ∀k /∈ P : d(k;P ) = 0, and

∀k ∈ P : d(k;P ) = 1 + min
l:d(l,k)=1

d(l;P ). (4.3)

Next, let Si denote the points in set S that are at a distance i away from the
complement of S,

Si = {k ∈ S : d(k;S) = i}. (4.4)
The main result of this section is a bound on the size of these sets, in particular
of |Si+1| in terms of |Si|, which can be obtained using results from digital
topology.
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Let S̄i denote the points in set Si that have no neighbour in Si+1

S̄i = {k ∈ Si : max
l:d(l,k)=1

d(l;S) ≤ i}. (4.5)

The sets Si and S̄i are illustrated in Fig. 4.3. For example, in the left panel
the solid black dots not connected by a line belong to S̄1: their neighbours are
either also in S1 or in the exterior of the domain. The black dots connected by
a line make up S1 \ S̄1.

(a) S1, S1 \ S̄1(regular curve) (b) S2, S2 \ S̄2(regular curve)

Figure 4.3: An illustration of the sets S1, S̄1 and their difference S1 \ S̄1 in
a component without holes (left panel), and similarly for S2. It is clear that
|S1| ≥ |S1 \ S̄1| > |S2| ≥ |S2 \ S̄2|. The set S3 in this example consists of a
single point.

Following the terminology of [21], we define a line cell as an adjacent pair of
points (k, l) : d(k, l) = 1 and a surface cell as a set of four points where all
pairwise distances are 1. We say that a pair of surface cells is point connected
if they share a point, and line-connected if they share two points.

This allows us to state the definition of a regular digital manifold.

Definition 4.6. [21, Definition 5.14] A point set S on a rectangular grid is a
regular digital manifold if

• all points belong to a surface cell;

• for any pair of surface cells there is a line-connected path between them.

We also define a slightly broader class of digital manifolds:

Definition 4.7. A set S is a pseudoregular digital manifold if
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• all points belong to a surface cell;

• for any pair of surface cells there is a point-connected path between them.

We have the following lemma’s.

Lemma 4.8. For any finite 2-dimensional set S, S − S̄1 is a finite union of
pseudoregular digital manifolds.

Proof. If S − S̄1 is empty, then the result is true. Henceforth we assume it is
not empty. To prove the first requirement of a pseudoregular manifold, note
that because of (4.3) and (4.5), every k ∈ S2 is surrounded by points in S − S̄1
and is therefore part of 4 surface cells. Furthermore, because of (4.5) every
point in S1 − S̄1 has at least one neighbor in S2, and is therefore part of a
surface cell. Grouping surface cells by point-connectedness, the result is a union
of pseudoregular manifolds.

Lemma 4.9. The distance to the boundary is preserved for all points after the
removal of S̄1,

∀k ∈ S \ S̄1 : d(k;S − S̄1) = d(k;S). (4.6)

Proof. First note that the distance of a point is the minimum over all the 8
connected neighbours plus one. Therefore if Si stays the same, Si+1 stays the
same. Then note that all neighbors of points in S2 are retained in S − S̄1.

Theorem 4.10. [21, Theorem 5.4] The boundary δS of a regular 2-dimensional
manifold S is itself regular, and the union of closed regular curves.

Lemma 4.11. [21, Lemma 9.1] A closed 2-dimensional digital curve has 4
more convex corners than non-convex corners.

Note that for now we assume the regular manifolds to be simply connected, i. e.
the line connected paths from Definition 4.6 can be incrementally varied. This
implies the boundary is a single closed regular curve.

The combination of these two theorems leads to

Lemma 4.12. For a 2-dimensional pseudoregular manifold

|Si+1| ≤ |Si| − 8, i ≥ 1. (4.7)

Proof. Consider a regular manifold S. All points in S1 form a closed digital
curve with 4 more convex corners than non-convex corners. As illustrated in
Fig. 4.4, a point on a straight segment maps to one element of S2, a convex
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corner maps three points of S1 to one of S2, and a non-convex corner maps one
points of S1 to three of S2. Since these points may coincide, the bound given
by (4.7) is obtained.

For a pseudoregular manifold, note that a pair of point connected components
can be regarded as 2 regular manifolds, with one point in common. Combining
the bounds for both regular manifolds and subtracting the one point in common
we again end up with (4.7).

This reasoning can be applied recursively by removing S̄i+1, obtaining another
pseudoregular set.

For an illustration of this reasoning, see Fig. 4.4. Note here that this bound is

(a) straight (b) convex (c) non-convex

Figure 4.4: Illustration accompanying Lemma 4.12. Since there are four more
convex corners than non-convex corners, and the target points can coincide,
|Si+1| ≤ |Si| − 8

sharp when S is a square set, i. e. each Si has just four – convex – corners.

We conclude with a generalisation that allows for isolated connected components
with a finite number of holes. The set Si+1 may be larger in this case than Si,
but the small growth does not invalidate the asymptotic complexity in the next
section.
Lemma 4.13. For a 2-dimensional set containing c pseudo-regular manifolds
with h holes, the number of points a distance i away from the boundary is
bounded by

|Si+1| ≤ |Si| − 8(c− h), i ≥ 1. (4.8)

Proof. For c pseudoregular manifolds, Lemma 4.12 holds individually for each
Sij . Thus the bound for the combined sets Si is

|Si+1| ≤ |Si| − 8c. (4.9)
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A hole in this context is a connected component not in P but entirely surrounded
by it. Denote by SiB the points whose closest neighbor not in P is in the hole.
Then a similar reasoning to Lemma 4.12 shows that

|Si,B | ≤ |Si \ S̄i,B | < |Si+1,B |+ 8. (4.10)

Summing the bounds completes the proof.

Remark 4.14. Theorem 4.12 does not hold in three dimensions and higher.
In fact, the set Si+1 can be larger than Si even for domains without a hole. A
domain with an intrusion can have interior non-convex angles, at which a single
point in Si maps to many points in Si+1.

4.2.2 Bounding η(τ,NΛ)

Theorem 4.15. Let TΩ and BΛ be as in (4.1) and (4.2). We are interested in
the behavior for large NΛ, with constant oversampling % = NΩ/NΩ. Furthermore,
let NδΩ(nΛ) denote the number of points in PδΩ neighbouring the boundary, i.
e. S1 from the previous section:

PδΩ = {k ∈ Ω | ∃l, ‖l‖∞ = 1 : k + l /∈ Ω}. (4.11)

We further assume that the limit

lim
NΛ→∞

(h(PΩ)− c(PΩ)) = C

exists with C <∞, where h(PΩ) and c(PΩ) are as before the number of holes
and distinct connected components of PΩ. Then for the operator TΩBΛTΩ

lim
NΛ→∞

tr(TΩBΛTΩ)− tr((TΩBΛTΩ)2) = O (NδΩ logNΛ) . (4.12)

Proof. The trace of TΩBΛTΩ is, using (4.2),

tr(TΩBΛTΩ) =
∑

k∈IΩ
B(k− k) (4.13)

= NΩB(0) = NΩNΛ
NR

. (4.14)

For the squared operator trace, note that

tr((TΩBΛTΩ)2) = ‖TΩBΛTΩ‖F =
∑

k∈IΩ

∑
l∈IΩ
|(TΩBΛTΩ)k,l|2.
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Now, define an intermediate function

f(k) =
∑
l∈IΩ
|(TΩBΛTΩ)k,l|2, tr((TΩBΛTΩ)2) =

∑
k∈IΩ

f(k).

This f can be rewritten as

f(k) =
∑

k∈IΩ
|B(k− l)|2

=
∑
l∈IR
|B(k− l)|2 −

∑
l∈(IR\IΩ)

|B(k− l)|2

The first sum is equal to NΛ/NR through Parseval’s equation. The second term
is the sum over the index set IR \ IΩ. As a shorthand notation, use

qk = d(k; IΩ).
The largest inscribed square around k is then given by k +Qk×Qk, see Fig. 4.5.
with Qk = {−qk + 1, . . . , qk − 1}. Restricting IΩ to this square and using
that due to periodicity

∑
l∈IR |B(l)|2 =

∑
l∈IR−k |B(l)|2, the last sum can be

bounded by

∑
l∈(IR\IΩ)

|B(k− l)|2 <
∑

l∈(IR\(k+Qk×Qk)

|B(k− l)|2

=
∑

l∈(IR\(Qk×Qk)

|B(l)|2

=

 ∑
k∈Rd\Qk

|B(k)|2d

2

+ 2

 ∑
k∈Rd\Qk

|B(k)|2
∑
k∈Qk

|B(k)|2
 .

(4.15)
Here Rd = {0, . . . , nR − 1}, and B(k) is the one-dimensional kernel.

From [106], the first sum can be bounded by∑
k∈Rd\Qk

|B(k)|2d =
nR−qk∑
k=qk

(
sin(πk/%)

nR sin(πk/nR)

)2
<

1
4qk

+ %

16q2
k
.

Further,
∑
k∈Qk

|B(k)|2d < %. Then (4.15) can be bounded by a rational
polynomial in qk.∑

l∈(IR\IΩ)

|B(k− l)|2 < %

2q
−1
k +

(
%2

23 + 1
24

)
q−2

k + %

25 q
−3
k + %2

28 q
−4
k ,
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IΩ

IR

k

Figure 4.5: The largest inscribed square in IΩ around any point k is k+Qk×Qk.
In this figure qk = 3, leading to a 5× 5 square.

with all coefficients independent of NR. Then

tr((TBT )2) =
∑

k∈IΩ
f(k)

>
NΩNΛ
NR

−
∑

k∈IΩ

(
%q−1

k +O(q−2
k )
)
.

Now recall from §4.2.1 that IΩ can be divided into sets Si = {k : qk = i}.
Lemma 4.13 states that |Si+1| < |Si| − 8(c− h). Furthermore, the size of the
bounding box dictates that qk can never exceed nR

2 . With this in mind it is
easier to sum over the regions Si than over all points at once. This leads to a
bound

NΩNΛ
NR

− tr((TBT )2) <
nR/2∑
i=1

∑
Si

(
%i−1 +O(i−2)

)
(4.16)

<

nR/2∑
i=1

(NδΩ + 8i(h− c))
(
%i−1 +O(i−2)

)
(4.17)

< C1NδΩ lognR + C2NδΩ (4.18)

(4.14) and (4.18) combined give the desired result.

Next, we want to relate the difference between iterated traces to the plunge
region. This relies on a fairly general counting argument, as in [106, 67]. Recall
that the trace of a matrix equals the sum of its eigenvalues, and the trace of a
matrix squared equals the sum of the squares of its eigenvalues.
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Lemma 4.16. Let 1 > λ1(N) > λ2(N) > · · · > λN (N) > 0 be a given ordered
series where

N∑
i=1

λi(N) = CN (4.19)

N∑
i=1

λi(N)2 = CN − g(N) (4.20)

where g(N) = o(N) is a positive function. Then |{λk : ε < λk < 1 − ε}| =
O(g(N)).

Proof. Define kmin and kmax as the limits of the intermediate region

kmin = arg min
k

λk : λk < 1− ε, kmax = arg max
k

λk : λk > ε. (4.21)

Then ∀k > kmin : λ2
k < (1− ε)λk and ∀k ≤ kmin : λ2

k < (1− ε)λk + ε, so that∑
k

λ2
k < (1− ε)

∑
k

λk + εkmin. (4.22)

Substituting (4.19) and (4.20) leads to

kmin > CN − g(N)
ε

. (4.23)

Similarly, ∀k < kmax : λ2
k < (1 + ε)λk − ε and ∀k ≥ kmax : λ2

k < (1 + ε)λk, so
that ∑

k

λ2
k < (1 + ε)

∑
k

λk − εkmax. (4.24)

Combined with (4.19) and (4.20) this yields the upper bound

kmax < CN + g(N)
ε

(4.25)

Theorem 4.17. Let Ω, TΩ, BΛ and PδΩ be as in Theorem 4.15. Then for the
operator TPΩBΛTPΩ

η(τ,NΛ) = O (NδΩ lognR) (4.26)
where η(τ,NΛ) is as in (2.11).

Proof. The proof follows directly from Theorem 4.15 and Lemma 4.16, and
noting that for square matrices tr(Ak) =

∑
λk.
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Remark 4.18. Theorem 4.17 gives a bound in terms of NδΩ(nΛ). For any
2-dimensional non-fractal domain, NδΩ = O(nΛ). To see this, note that d =
limnΛ→∞

logNδΩ
lognΛ

is equal to the box-counting or Minkowski-Bouligand definition
of the boundary dimension [36]. For a non-fractal domain this is equal to the
topological dimension of the boundary which is 1.

Remark 4.19. Theorem 4.17 can easily be seen to hold in the one-dimensional
case whenever Ω is a finite union of k disjoint intervals. The plunge region
would then grow as O(k logNΛ). This can be seen as a discrete version of [67],
where time- and bandlimiting operators for such Ω where proven to have this
singular value profile in the continuous case.

Remark 4.20. Theorem 4.17 leads to an O(N2
Λ log(NΛ)2) complexity for

Algorithm 3 on 2D domains. It is however difficult to extend the results
from §4.2.1 to higher dimensions, as there is no straightforward equivalent of
Lemma 4.12. Even if it could be extended to those domains, Theorem 4.17
would still yield asymptotic reductions in higher dimensions, though the savings
have diminishing returns, generally of the order O(n3d−2

Λ ) versus O(n3d
Λ ) for a

full SVD.

4.3 Numerical results

This section contains examples and numerical results for various two-dimensional
domains and method parameters. The aim is to demonstrate the asymptotic
complexity, convergence properties and robustness of the algorithm. The
different geometries analyzed in this section are shown in Fig. 4.6. All domains
are normalised to have equal area. These domains where chosen for their
contrasting properties:

• The square and diamond show the method is not rotation invariant.

• The square and disk show the effect of corners

• The disk and ring show the effect of a simply connected domain versus a
not simply connected domain.

• A double asteroid is included to study boundaries that are not smooth.

The effect of the domain on complexity and accuracy is discussed in detail in
§4.3.3.

Throughout these experiments, the basis of choice is a Fourier basis on the
rectangle [−T, T ]× [−T, T ] with NΛ = n2

Λ degrees of freedom. Unless specified
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otherwise, the value for T is 2 and the oversampling factor NΩ/NΛ is taken to
be 4. The cutoff τ is consistently 10−14.
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Figure 4.6: Test domains used throughout this section. The dot marks the
location of the singularity in the second test function.

Remark 4.21. When the domain is rectangular, applying Algorithm 3 directly
is less efficient than decoupling the problem and solving it through tensor
product 1D Fourier extensions. In general there are always opportunities to
exploit structure in the domain when it is present. However, to keep the
comparisons uniform, we will not do so in this section.
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4.3.1 Complexity

Figure 4.7 shows execution time for Fourier frame approximations with increasing
degrees of freedom. The approximant is irrelevant here since complexity of
Algorithm 3 is independent of the right hand side. Our algorithm computes
the equivalent of a truncated SVD and is applied to the sampled function in a
single step. The domain is also largely irrelevant since the plunge region size is
similar for the chosen domains, see §4.3.3. Therefore the timings are shown for
just the one example: approximating

f(x, y) = e(x+y) cos(20xy)

on a disk of area 4.

101.4 101.6 101.8 102
10−1

100

101

102

103

nΛ

tim
e(

s)

projection
direct
O(N2

Λ)
O(N3

Λ)

Figure 4.7: Execution time for a 2D frame approximation, using both a direct
solver and the projection algorithm. O(N2

Λ) and O(N3
Λ) shown dashed in black.

The results confirm the O(N2
Λ log2NΛ) complexity of the projection algorithm,

with the dominant cost being the SVD used in the randomised SVD solver.
Unfortunately, the direct method is only overtaken for nΛ > 90, making the
projection method mostly suited for problems requiring a large number of
degrees of freedom, such as oscillatory functions. However, the algorithm
complexity directly depends on the plunge region size, which heavily depends
on τ . In the presence of noise on the order of δ, one may want to choose τ > δ,
see §3.6.2, lowering the rank-estimates considerably.
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4.3.2 Accuracy

To show convergence, the frame approximation method was applied to a set of
test functions, for increasing degrees of freedom. The test functions are

• A well-behaved, smooth function

f(x, y) = ex+y.

• A function with a singularity inside the bounding box

f(x, y) = 1
((x− 1.1)2 + (y − 1.1)2)2 .

• An oscillatory function

f(x, y) = cos(24x− 32y) sin(21x− 28y).

• A function with a discontinuity in the first order partial derivatives

f(x, y) = |xy|.

The results are shown in Figs. 4.8 to 4.11, for the residual norm ‖Ax− b‖2/‖b‖2
on the one hand and for the largest point error ‖F − f‖∞ on the other hand,
sampled randomly in the domain (10000 samples). There are a few interesting
observations to be made regarding the convergence behavior for different target
functions.

• The approximation error for the smooth function shows superalgebraic
convergence on all domains, strengthening claims in this regard [1, 3]. The
only exception is the star-shaped point error. We return to this in §4.3.3.

• The approximation error for the oscillatory function behaves exactly as
expected, decreasing rapidly once the highest oscillatory mode can be
resolved by the basis functions.

• Figure 4.10b shows the results for a function with a singularity right
outside the domain of interest. Similar to the 1D case, this results in a
slower, yet still superalgebraic rate of convergence.

• A function that has s continuous derivatives will exhibit order s + 1
convergence, as seen in Fig. 4.11b, for the residual error. The largest point
error shows very little, if any, convergence.
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Figure 4.8: Residuals for a 2D frame approximation, for different domains and
approximants.
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Figure 4.10: Maximum pointwise error for a 2D frame approximation, for
different domains and approximants.
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Figure 4.11: Maximum pointwise error for a 2D frame approximation, for
different domains and approximants.
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4.3.3 Influence of domain shape

Plunge region estimates

Theorem 4.17 leads to an estimate of the plunge region of the form

η(τ,NΛ) = C1NδΩ lognR +O(NδΩ) (4.27)

where C1 =
(
nΛ
nR

)D−1
1
τ2 . This is because the eigenvalues λi of TΩBΛTΩ are

the squares of the singular values σi of the collocation matrix A, so that

τ < σi < 1− τ ⇔ τ2 < λi < 1− 2τ + τ2.

The constant C1 is a gross overestimate, as shown in Fig. 4.12, which plots
the ratio η(τ,NΛ)/(NδΩ lognR) as a function of NΛ. The ellipse, square

101 102

100.6

100.8

101

nΛ

C
1

rect
diam
disk
ring
star

Figure 4.12: Estimate of plunge region size with respect to NδΩ lognR.

and diamond seem to reach the asymptotic behavior (4.27) with a constant
C1 ∼ 10. The ring and star domain have not yet reached their plateau, but
it is reasonable to assume this plateau, like the bound from Theorem 4.17, is
proportional in some way to the domain boundary length. Using the Euclidean
length, the plateau for the ring would be at 101.08 and for the star at 101.39,
both plausible from Fig. 4.12.
Remark 4.22. An alternative to using an estimate for the plunge region rank
is to use an adaptive form of the random matrix algorithm for unknown ranks.
The idea is to iteratively increase the number of random vectors until the
smallest singular value of PAW is below the chosen threshold τ . As per [68],
this eliminates the need for a difficult estimation of C1, at a maximum factor 2
increase in cost.
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Influence on convergence

The influence of domain shape on convergence is readily apparent from
Figs. 4.10a to 4.11b. There are a number of factors that combined lead to the
differences seen between the domains.

The maximum pointwise error In Fig. 4.10 the error was taken as the infinity
norm over Ω for F − f , calculated over 10000 random samples of Ω. However,
the actual approximation F − f in all these experiments was computed from
an equispaced grid of collocation points. Some points in Ω, e.g. at the spikes
of the star shape may be far away from the equispaced grid, see Fig. 4.13.
In this figure the maximum pointwise error is found at the tip of the spikes,
far removed from the actual sample points. Since no information about the
tips was taken into account, convergence in these areas cannot be expected
until they are sufficiently covered by the grid. This problem is unique to the
higher-dimensional case, as in the one-dimensional problem the endpoints can
be guaranteed to be included.
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Figure 4.13: Error contour for the star-shaped domain with test function
f(x, y) = ex+y and nΛ = 50. Right figure shows detail of a sharp feature
together with the location of actual sample points.

Figure 4.8 contains the experiments from Fig. 4.10 but now shows the relative
error in the grid points only. The results show that all approximations do
converge as expected in the collocation points. The difference is, as was
expected most apparent in the star-shaped region. In §5.1.3 we discuss a
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possible approach to improve accuracy precisely at the tips of the star-shaped
region.

Proximity to the singularity In the 1D case, the effect of the presence of a
singularity on the convergence rate was covered in §2.3.2. In particular, the
convergence rate is ‖PτNΩ,NΩ

f − f‖ ∼ ρ−NΛ after a certain breakpoint, with

ρ = min{ρ∗, E(T )}

and ρ∗ determined by the largest singularity-free region Γ(ρ∗) (see (2.28)). As
illustrated in Fig. 3.7, we expect a singularity close to the domain to be the
limiting factor in the convergence rate.

This is confirmed in Figs. 4.8b and 4.10b. With the singularity of the test
function

f(x, y) = 1
((x− 1.1)2 + (y − 1.1)2)2

located at (1.1, 1.1), the rectangle is closest to the singularity. In rough order
of proximity to the singularity, the other domains are star, ring, circle and
diamond. The effect is most apparent in Fig. 4.8b, where the convergence rate
of the error for the diamond shape is significantly faster than the rate for the
rectangle, where for test functions without singularities they differ much less.

4.3.4 Robustness

To ensure the results remain stable for large NΛ, Fig. 4.14 shows the
approximation of a function

f(x, y) = sin
(nΛ

2 (x+ y)
)

for increasing degrees of freedom NΛ on a unit circle. This showcases the close
relationship between the number of degrees of freedom needed per wavelength
and the size of the extension region. For T = 1.2 and T = 2, the extension
region is narrow enough for the approximation to resolve the oscillation. The
main difference here is the convergence rate, which is slower for smaller T as
per the 1D case. For T = 3, the highest frequency mode present in the Fourier
basis of degree NΛ is not enough to resolve the function, and it is impossible for
convergence to occur. This behavior is identical to that observed in Fig. 3.9.
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Chapter 5

Algorithm modifications

In Chapter 3 an implicit algorithm was introduced, that efficiently solves the
least squares collocation problem, given the singular value profile from Fig. 2.2
and a fast matrix-vector product.

In Chapter 4 we showed that this singular value profile is present in the higher-
dimensional case, and that the algorithm has applications in that setting as
well. This chapter takes Algorithm 3 a step further. First we show that when
the collocation matrix A is extended with some extra rows or columns, the
singular value profile still holds. This makes Algorithm 3 applicable to a variety
of problems that depend in some way on function approximation, illustrated
in Sections 5.1.2 to 5.1.4. This includes the solution of elliptic boundary value
problems with constant coefficient differential operators. Second, the redundancy
in the solution is used to obtain a smoother solution in §5.2.

5.1 More general minimisation problems

The previous chapters have covered the case of finding

fNΛ = arg min
g∈ΦNΛ

‖g − f‖2 (5.1)

with the norm either the L2 norm on Ω, or a discrete norm on PΩ, and fNΛ in
a truncated Fourier frame ΦNΛ . A suitable fNΛ is obtained through the T-SVD,
and the algorithms from Chapters 3 and 4 calculate the regularised projection

101
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PτNΩ,NΛ
f . In this chapter we extend (5.1) to minimizing

fNΛ = arg min
g∈ΦNΛ

S∑
i=1

ci‖Lig − hi‖Ωi . (5.2)

ΦNΛ = {φi}N1
i=1 ∪ {ψi}

N2
i=1 ∪ . . . (5.3)

where ΦNΛ can be a collection of frames and/or bases, and Li operators.

Following the previous chapters, the minimiser is found through oversampled
collocation. As an example, consider the Poisson equation on Ω, with
homogenous Dirichlet boundary conditions:

∆f(x) = h1(x), x ∈ Ω, (5.4)

f(x) = 0, x ∈ δΩ. (5.5)

A possible approach to solving this problem is based on collocation on both
domain and boundary, as proposed by Kansa in [62, 63] for Radial Basis
Functions (see §1.3.2). Following [22], we formulate the problem as an
(oversampled) weighted least squares problem

fNΛ = arg min
g∈ΦNΛ

(∑
x∈PΩ

|∆g(x)− h1(x)|2 + c2
∑
x∈PδΩ

|g(x)|2
)
, (5.6)

where NΩ +NδΩ > NΛ, NΩ = |PΩ|, NδΩ = |PδΩ|. The coefficients x of fNΛ are
found through solving the least squares system[

AΩL̂1
cAδΩ

]
x =

[
h1
0

]
. (5.7)

Here, L̂1 is a matrix that represents ∆ acting on the Fourier coefficients, AΩ and
AδΩ are the collocation matrices in PΩ and PδΩ respectively, and h1 contains
the right hand side of (5.4) sampled in PΩ. When ΦNΛ consists of certain RBFs,
this approach converges to the solution of (5.2) under certain conditions [22].
Among these are ellipctic L1, smoothness of the exact solution, and Ω Lipschitz.
In §5.1.4 we will show that such weighted least squares problem can be solved
efficiently using Algorithm 3, although no convergence results are known.

For Algorithm 3 to be applicable, there are two requirements, that will be made
more precise in §5.1.1. In particular:

• At least one of the operators Li in (5.2) should be invertible in coefficient
space, i.e. L̂−1

i exists. Furthermore, when discretising as in (5.7), the
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matrix subblock corresponding to Li should be dominant in size. Looking
at the example in (5.6) and (5.7), the matrix block AΩL̂1 should be largest,
or equivalently NΩ � NδΩ.

• Likewise, one of the function sets in (5.3) should have many elements
compared to all others. This should be a frame or basis for which fast
function approximation exists, like orthonormal bases or Fourier extension
frames.

This section will cover three examples of these more general minisation problems:
the aforementioned boundary value problem, a problem where the sampling set
is no longer uniform, and a frame consisting of an orthogonal basis augmented
by polynomials or singular functions. These last two examples illustrate the
second limitation: the number of polynomials or singular functions added should
be small compared to the size of the other basis or frame. Augmenting bases
and frames resembles Eckhoff’s method [34], where an approximation of the
form

f(x) = fNΛ(x) +
T∑
i=1

k∑
j=1

Qi,jVi,j(x) (5.8)

is computed, where fNΛ(x) is a Fourier series, and Vi,j(x) are known features
of f that are difficult to approximate with Fourier series. The key difference
is that Eckhoff’s method explicitly derives formulae for the Qi,j , while in our
approach the Fourier coefficients and the Qi,j are found simultaneously, through
a coupled least squares system.

5.1.1 Singular values of the extended matrix

In §3.4 we formulated two conditions for Algorithm 3 to be significantly faster
than O(N3

Λ) operations when solving

Ax = b, A ∈ CNΩ×NΛ . (5.9)

First, the collocation matrix A needs to be applicable fast, preferably in
O(NΛ logNΛ) operations. Second, the size of the plunge region

η(τ,NΛ) = min
1≤k,j≤NΛ

(k − j) s.t. σj ≥ 1− τ, τ > σk (5.10)

needs to grow as o(NΛ). The complexity of Algorithm 3 is then O(NΛη(τ,NΛ)2)
operations.
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A requirement for our approach is that the collocated minimisation problem
can always be written as a block matrix equation,

Ã =


A11 A12 . . .

A21
. . .

...


x1
x2
...

 =

b1b2...
 , (5.11)

where A11 has small η(τ,NΛ). The other blocks should correspond to a relatively
small number of rows nr and columns nc:

Ã ∈ C(NΩ+nr)×(NΛ+nc), nr + nc � NΛ.

The cost of applying Ã is equal to the cost of applying A11, with an additional
nrNΛ + ncNΩ + nrnc multiplications. For the application to be O(NΛ logNΛ)
we therefore need nr + nc = O(logNΛ).

For the singular value profile of Ã, we show the relationship between η(τ,NΛ)
for A, and nr + nc in Theorem 5.2. This follows from the well known Cauchy
Interpolation theorem for eigenvalues of Hermitian matrices, and its equivalent
for singular values of rectangular matrices.

Theorem 5.1. [86] Let NΩ, NΛ, nc, nr be natural numbers. Given nonnegative
real numbers σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃min{NΛ+nc,NΩ+nr}, σ1 ≥ σ2 ≥ · · · ≥
σmin{NΩ,NΛ}, there exists an (NΛ + nc)× (NΩ + nr) complex matrix with σ̃i as
singular values and having a NΩ ×NΛ submatrix with σi as singular values if
and only if

σ̃i ≥ σi, i = 1, 2, . . . ,min{NΩ, NΛ}, (5.12)

σi ≥ σ̃i+nc+nr , i = 1, 2, . . . ,min{NΩ − nc, NΛ − nr}. (5.13)

This leads immediately to

Theorem 5.2. Let nc and nr be the number of columns and rows added to the
matrix A to get Ã. Furthermore let η(ε,NΩ, A) and η(ε,NΩ, Ã) be defined as in
(5.10) for A and Ã respectively. Then

η(ε,NΩ, Ã) ≤ η(ε,NΩ, A) + nc + nr. (5.14)

Proof. Let σ̃i denote the singular values of Ã. Then from Theorem 5.1, with k
and j as in (5.10):

ε > σk ≥ σ̃k+nc+nr ,
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and

σ̃j ≥ σj ≥ 1− ε.

Then

η(ε,NΩ, Ã) ≤ k + nc + nr − j (5.15)

≤ η(ε,NΩ, A) + nc + nr. (5.16)

Furthermore, from Theorem 5.1 we have

∀k ≥ nc + nr : σ̃k ≤ 1. (5.17)

Together with Theorem 5.2 this leads to

|{|σ̃ − σ̃3| > ε}| ≤ η(ε,NΩ, A) + 2(nc + nr), (5.18)

a rank estimate for (ÃÃ∗ − I)Ã in Algorithm 3. This means the asymptotic
complexity for Algorithm 3 is unchanged as long as

nc + nr = O(η(τ,NΛ)). (5.19)

5.1.2 Augmented bases and frames

Fourier basis plus polynomials

An example borrowed from [1] is the augmentation of the Fourier basis by
a set of polynomials, in this example the normalised Legendre polynomials
Lk(x) =

√
k + 1/2Pk(x), both on the interval [−1, 1]. The truncated frame is

ΦNΛ,k =
{

1√
2

eiπnx
}
n∈IN

∪ {Lj(x)}j=1,...,k . (5.20)

We exclude L0(x) = 2−1/2 since it is already present in the Fourier basis
functions. The least squares system becomes[

AF AL
] [xF
xL

]
= b, Ω = [−1, 1] (5.21)

where AF ∈ CNΩ×NΛ , AL ∈ CNΩ×k are the (oversampled) collocation matrices
and xF ∈ CNΛ , xL ∈ Ck are the coefficients for the Fourier and Legendre terms
respectively.
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We illustrate this approach by approximating
f(x) = ex + cos 5(x− 0.1)2 (5.22)

for a range of values of NΛ and k. Solving (5.21) immediately results in an
expansion in the frame (5.20). Figures 5.1a and 5.1b show both timings and
the approximate L∞ error (calculated in a random 10000 point grid) for the
approximation as a function of NΛ + k.

Since f is not periodic on [−1, 1], the regular Fourier Series, i. e. ΦNΛ,0 does
not converge in the L∞ norm. On the other hand, since f is entire, the best
Chebyshev approximation in Φ0,NΛ converges superexponentially. For the frame
ΦNΛ,k, [1] has an equivalent of Theorem 1.18 for this frame when calculating
the continuous FE PτNΛ

f .
Theorem 5.3. [1, Proposition 5.9] Let k ∈ N be fixed and consider the frame
(5.20). If f ∈ Hk(−1, 1) for 0 ≤ k ≤ K then

‖f − PNΛf‖ ≤ CkN
−k
Λ ‖f‖Hk(−1,1) (5.23)

and
‖f − PτNΛ

f‖ ≤ Ck,d
(
N−kΛ +

√
τ
)
‖f‖Hk(−1,1). (5.24)

Intuitively, the nonperiodic polynomials allow some derivatives to be interpolated
at the boundary, smoothing out the periodic extension so the Fourier series
converges faster. The convergence rates in Fig. 5.1a for the discrete regularised
projections agree with those for the continuous projections, as evidenced by the
black lines showing O(N−kΛ ) complexity.

The complexity for moderate NΛ is dominated by the cost of the SVD, which is
O(NΛ(20 + k)2) operations. Figure 5.1b shows the linear cost in NΛ. The cost
difference seen between ΦNΛ,0 and ΦNΛ,2 is explained by the minimum of 20
random vectors, needed as a safety buffer for the randomised SVD algorithm,
as in §3.1.1. For large NΛ the FFTs dominate the cost, and the algorithm has
an asymptotic complexity of O((20 + k)NΛ logNΛ) operations. Note that the
frame approximation in Φ0,NΛ was computed using collocation in Chebyshev
points to achieve the O(NΛ logNΛ) complexity.

Fourier Frame plus Weighted polynomials

Taking the previous example further we approximate the two-dimensional
function

f(x) = sin
(

7
√
x2

1 + x2
2

)
+ 0.2(cos(21x1 − 22x2)2 + sin(23x1 + 24x2))

(5.25)
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Figure 5.1: L∞-error and time complexity when using Algorithm 3 to
approximate (5.22) using aNΛ term Fourier series augmented with k polynomials.
In Fig. 5.1a the black dotted lines show O(N−kΛ ) convergence. In Fig. 5.1b the
black dotted line shows O(NΛ) complexity.
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The first term has a square root type singularity at x = (0, 0). The second term
in (5.25) is oscillatory. The domain Ω is a circle with radius 0.7 centered at the
origin. We can tailor a frame on the bounding box [−1, 1]× [−1, 1] to this type
of singularity:

ΦNΛ,k2 =
{

einπx·l/2
}

l1,l2=−nΛ,...,nΛ
∪ {ω(x)Ti(x1)Tj(x2)}i,j=0,...,k−1

ω(x) =
√
x2

1 + x2
2,

where the Fourier Frame is augmented by a weighted tensor product Chebyshev
polynomial frame with k2 degrees of freedom. The weight ω encodes the singular
behavior in (5.25). The least squares system becomes

[
AF WAT

] [xF
xT

]
= b, Ω = [−1, 1] (5.26)

where AF ∈ CNΩ×NΛ , AT ∈ CNΩ×k2 are, as before, the (oversampled)
collocation matrices for the bases and the respective coefficients are xF ∈
CNΛ , xT ∈ Ck2 . The matrix W is a diagonal matrix consisting of ω evaluated
in the sample points (recall that each row of AF and AT corresponds to a point
in PΩ).

Figure 5.2 shows the result of applying Algorithm 3 to this problem for increasing
NΛ + k and k = 0, 2, 4, 8. The regular Fourier frame ΦN,0 shows O(N−1/2)
convergence in the residual, as expected. The oscillatory term gets resolved by
the Fourier frame at N2

Λ ∼ 103. Afterward, convergence is algebraic, like in the
example from the previous section.

5.1.3 Local accuracy improvement

We now present an example that takes (5.11) in a different direction, by adding
extra rows instead of columns. Augmenting the collocation grid PΩ with a small
point set Pχ of extra points results in extra matrix rows. Here, Pχ is a point
set containing samples that are not on the regular grid, but still in Ω where the
target function is known. Then the least squares system becomes[

AΩ
Aχ

]
x =

[
bΩ
bχ

]
. (5.27)

A possible application when approximating a function on an interval is to
ensure that the endpoints are part of the collocation grid. However, an example
where this can be used to greater effect is approximations on a domain Ω from
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Figure 5.2: Residual error and time complexity when using Algorithm 3 to
approximate (5.25) using an N2

Λ term Fourier series augmented with k2 weighted
polynomials. Black dotted line in Fig. 5.2b shows O(N2

Λ) complexity.
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§4.3. On the starlike domain shown in Fig. 4.13b, four different test functions
where approximated and it was found that while the residual steadily decreases,
the L∞ error, measured in random samples, was significantly higher than for
domains without sharp features. Experiments showed the pointwise error to be
largest on the boundary, and especially in the tips of the star shaped domain.
See Fig. 4.13a in the previous chapter for a contour plot of the pointwise error
in one of the experiments.

A possible remedy is to manually add sample points Pχ to these undersampled
regions. The effect is shown in Fig. 5.3 and it is very clear. Adding just 4 extra
sample points to each of the tips lowers the L∞ error – measured in 106 random
points in Ω – from ∼ 10−1 to ∼ 10−4.

This is backed up by Fig. 5.4, where the L∞ error with added gridpoints is
consistently 100 to 1000 times smaller, up until the point the residual reaches
machine precision. The timings confirm the negligible influence the added
gridpoints have on the algorithm’s performance.

5.1.4 Boundary value problems

In this section we return to the example from §5.1, where L1 is a differential
operator, and L2 corresponds to the boundary conditions. This allows us to
formulate differential equations in the form of (5.2). For a k-th order differential
equation

L1f = αk
dkf

dxk
+ · · ·+ α1

df

dx
+ α0f = h1,

denote by p1(x) = αkx
k + · · ·+ α1x + α0 its characteristic polynomial. Now

since
f ′(x) =

∞∑
k=−∞

f̂ [k]
(

e ikπx
b−a

)′
=

∞∑
k=−∞

ikπ
b− a

f̂ [k]e ikπx
b−a

the differential operator on the Fourier coefficients of f is diagonal

f̂ ′ = Df̂, Dk,k = ikπ

b− a
, k = −∞, . . . ,∞.

Denoting by p(D) the characteristic polynomial as a matrix polynomial acting
on D, the differential equation in coefficient space becomes

p1(D)f̂ = ĥ1.

In matrix form for a Fourier series with NΛ degrees of freedom, this leads to a
system AΩp(D)x = b. AΩ is as before the collocation matrix in PΩ, and b is h1
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Figure 5.3: Contour plot of log10 ‖F − f‖∞, when zoomed in on one of the star
tips from Fig. 4.13b.
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Figure 5.4: Errors and timings when approximating f(x, y) = ex+y on the star-
shaped domain from Fig. 4.13b, for increasing NΛ. The full lines in Fig. 5.4a
show the L∞ error, the dotted lines the residual ‖Ãx− b‖/‖b‖. Grid denotes
the regular grid PΩ, Grid+ denotes PΩ ∪Pχ. The dotted lines in Fig. 5.4b show
O(N2

Λ) and O(N3
Λ) complexity.
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sampled in PΩ. The boundary conditions can then be added as extra rows in
the problem matrix. Let

L2f(x) = h2(x), x ∈ δΩ2

...

Lkf(x) = hk(x), x ∈ δΩk

denote the boundary conditions with operator Lk, right hand side hk and
subset of the boundary δΩk. Let pk(x) be the characteristic polynomial of
Lk. Then with PδΩk appropriate sampling sets on the boundary, and AδΩk the
corresponding collocation matrix, the differential equation can be collocated as

AΩp1(D)
c2AδΩ2p2(D)

...
ckAδΩkpk(D)

x =


h1
h2
...
hk

 (5.28)

This is equivalent to

fNΛ = arg min
g∈ΦNΛ

∑
x∈PΩ

|L1g(x)− h1(x)|2 +
k∑
j=2

c2j
∑

x∈PδΩj

|Ljg(x)− hj(x)|2
 ,

(5.29)
the weighted least squares approach mentioned in §5.1.

Remark 5.4. We note here that it is unclear how to choose the sampling sets
PδΩj with respect to PΩ, and how to choose the weights ck. When ΦNΛ consists
of certain RBFs, these questions are answered in [22] under some assumptions.
These are that Ω has a piecewise Cm continuous boundary, Dirichlet boundary
conditions (k = 2, Lk = I), sufficiently smooth hi so that the exact solution
f is smooth in some sense, and elliptic L1. Then fNΛ converges to f when Ω
and δΩ are sampled increasingly dense with some uniformity requirements, and
the convergence rate depends on the weights ck, the dimension of Ω and the
smoothness of the RBFs.

Even though precise convergence results for (5.29) are unknown, we illustrate
that the least squares system (5.28) can be solved efficiently using Algorithm 3.
To do so, we first notice that the sampling sets PδΩj are small in size compared
to PΩ when sampled with similar densities

sup
x∈Ω

min
y∈PΩ

|x− y| ≈ sup
x∈δΩ

min
y∈PδΩ

|x− y|.
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Since pk(D) is diagonal and can be applied fast, this satisfies the first
requirement, that the matrix from (5.28) can be applied reasonably efficient.
For the second requirement, we first note that AΩp1(D) in general does not
have the required singular value profile. However, AΩp1(D)(p1(D))−1 = AΩ
does, with (p1(D))−1 the inverse of p1(D), assuming it exists. Rewrite (5.28) as

AΩ
c2AδΩ,2p2(D)(p1(D))−1

...
ckAδΩkpk(D)(p1(D))−1

 y =


h1
h2
...
hk

 (5.30)

and set
x = (p1(D))−1y.

Then, following Theorem 5.2, and with nr = CNδΩ ≤ η(τ,NΛ), the asymptotic
complexity when using Algorithm 3 to solve this system is equal to that of
solving AΩx = b.

As an example we solve the Helmholtz equation

∆f(x) + 1002f(x) = e−400((x1+0.3)2+x2
2)2
, x ∈ Ω, (5.31)

∂f

∂nx
(x) = 0, x ∈ δΩ1,

f(x) = 0, x ∈ δΩ2. (5.32)

As Ω we take a two-dimensional smooth star shaped domain with a circle of
diameter 0.2 cut out, with homogenous Neumann boundary conditions on the
outer boundary and homogenous Dirichlet boundary conditions on the inner
boundary.

The solution using the procedure outlined in this section is shown in Fig. 5.5.
The approximation uses a 71×71 set of Fourier basis functions on a [−1.2, 1.2]×
[−1.2, 1.2] grid (slightly larger than pictured). The oversampling was % = 1.5,
the boundary points selected by finding pairs of grid points with only one point
in Ω, and using bisection to find points on the boundary.

Remark 5.5. An extension of the Kansa method is to additionally require the
governing equation to hold on the boundary points (PDECB, solving PDEs
with Collocation on the Boundary) [37]. In the setting of (5.28) this would add
extra conditions AδΩp1(D)x = h1(PδΩ) to the problem matrix. In our limited
experiments, this did not significantly improve the error for the governing
equation, nor the boundary conditions.
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Figure 5.5: The solution of the Helmholtz equation (5.31), on smooth, non-
simply connected domain.

Remark 5.6. The algorithm outlined here is a step towards a spectral method
for arbitrary domains, that avoids the O(N3

Λ) complexity of other domain-
independent methods. For one-dimensional differential equations with variable
coefficients very efficient spectral methods exist, based on Chebyshev series
[77]. The Chebyshev approximations have so far however only been extended
to rectangular [98] or spherical [99] regions.

5.2 Sobolev Smoothing

Up until now we have solved the least squares problem Ax = b by computing
(approximate) T-SVD solutions. With Uα+β as before the left singular vectors
for which σk > τ , the truncated SVD solution x satisfies

‖Uα+βU
∗
α+β(Ax− b)‖ = 0. (5.33)
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This solution is not unique. With Vγ the right singular vectors for which σk < τ ,
we can add any z ∈ span(Vγ) to x and the requirement will still hold. However,
for the T-SVD solution ‖VγV ∗γ x‖ = 0. Therefore, among all solutions of (5.33),
the T-SVD solution is the one with minimal `2 norm.

Recall from Figs. 2.3 and 4.1 that the functions corresponding to z ∈ span(Vγ)
have a fraction larger than 1− τ of their L2 norm outside of Ω. The redundancy
in the solution thus allows altering the behaviour on R \ Ω. Where the T-SVD
is the solution that is minimal outside Ω, we could conceivably choose an x so
that the solution has other desirable properties, e.g. smoothness. This approach
was introduced by Lyon in [71], and can be adapted1 to the fast algorithm in
[69]. In this section, we adapt Algorithm 3 in a similar way.

The first requirement is a notion of smoothness. Let Hk denote the k-th standard
Sobolev space on R with norm

‖f‖Hk =
(

k∑
i=0

∫
R

|f (i)(x)|2dt
) 1

2

. (5.34)

This space combines the function norm with norms of the derivatives up to
k, resulting in a norm that indicates a degree of smoothness. It is a Hilbert
space, a subspace of L2

R containing functions f for which the Fourier coefficients
satisfy

∞∑
l=−∞

(1 + l2 + l4 + · · ·+ l2k)|f̂ [l]|2 <∞.

For a finite Fourier series f̂ [l], l ∈ IN , the Sobolev norm can be computed as

‖f‖Hk = ‖Df̂‖, D2
ij =

{
1 + j2 + j4 + · · ·+ j2k, j = i

0, j 6= i
, j, i ∈ IN

(5.35)
Here ‖Df̂‖ is the regular `2 norm of Df̂ . We can then define the Sobolev
extension.

Definition 5.7. The Sobolev extension, with D as in (5.35), is the one with
coefficients

y = arg min
z
‖Dz‖, s. t. ‖Uα+βU

∗
α+β(Az − b)‖ = 0. (5.36)

1The idea for this fast smoothed algorithm was presented by M. Lyon at the ICERM
research cluster on Sparse and Redundant representations, as part of the semester program
on High Dimensional approximation, in 2014.
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This extension is the smallest function on R in the Hk-norm, for which the
coefficients satisfy (5.33).

With x the T-SVD solution, (5.36) can be restated as

y = arg min
z
‖Dz‖, z = x− xγ , xγ ∈ span(Vγ).

Given an orthogonal basis Q for span(DVγ), the solution to this problem is
given by y = (I−D−1QQ∗D)x, assuming D−1 exists. However, orthogonalizing
DVγ is a costly operation.

A possible approach stems from the realisation that Vβ can be obtained
in O(NΛη(τ,NΛ)2) operations using Algorithm 1, and that the orthogonal
complement of DVα+γ is given by D−1Vβ . This allows for a projector I −QQ∗
onto span(DVα+γ), using only the orthogonalised and scaled plunge region
singular vectors DVβ .

The procedure is then as follows: given any xβ such that

‖UβU∗β(Axβ − b)‖ = 0, (5.37)

and an orthogonal basis Q for span{D−1Vβ},

x̃β = D−1QQ∗Dxβ (5.38)

is the minimiser of the Sobolev norm ‖D · ‖ among all coefficients that satisfy
(5.37). Indeed for any xα+γ ∈ span{Vα+γ} we have 〈Dxα+γ , Dx̃β〉 = 0. All
that remains is then to find an xα ∈ span{Vα} such that x̃β satisfies (5.33). As
in the previous chapters, this can be approximated well by

xα = A∗(b−Ax̃β).

The full algorithm implementing this smoothing procedure is given in
Algorithm 4.

Algorithm 4 Smoothed Implicit algorithm
(AA∗ − I)Axβ = (AA∗ − I)b (Algorithm 3) . O(NΛr

2)
V SU∗ = A∗(AA∗ − I) (Algorithm 1) . O(NΛr

2)
QR = D−1V (reduced QR) . O(NΛr

2)
x̃β = D−1QQ∗Dxβ . O(NΛr)
xα = A∗(b−Ax̃β) . O(NΛ logNΛ)
x = xα + x̃β . O(NΛ)

Figure 5.6 shows an interpretation of the intermediate results similar to Figs. 3.2
and 3.3. Figure 5.6a shows the Fourier series corresponding to xβ . Recall from
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§3.4 that xβ = VβV
∗
β x+rα+rγ , with rα and rγ introduced through the random

vectors W . After the projection in (5.38), x̃β = VβV
∗
β x+ wα + wγ , where wα

and wγ are such that x̃β has minimal Hk norm (Fig. 5.6b). Indeed, while the
solution is smoothed both in Ω and R \ Ω, the region around the boundary
is where all functions TNx, x ∈ span{Vα+γ} are small, so the original solution
is retained there. The final steps of the algorithm are the same as those of
Algorithm 3, and are equivalent to extending the residual on Ω by zeros, and
doing an inverse Fourier transform.

Remark 5.8. In Chapter 3 Algorithms 2 and 3 were shown to yield different
solutions. Where Algorithm 2 approximates the T-SVD, Algorithm 3 returns a
solution with extra contributions rγ ∈ span{Vγ}, due to the random vectors in
W . However, Algorithm 4 can emulate Algorithm 2 if D = I. The intermediate
solution xβ gets projected onto span{Vβ}, and the resulting x has minimal `2
norm.

5.2.1 Convergence of the smoothed extension

In [1, Remark 5.6] it was shown that the T-SVD solution of the discrete FE –
after the initial superalgebraic or exponential convergence (see Theorem 2.24)
– slowly converges to the dual frame solution. Recall from §1.4 that the dual
frame coefficients are those that have minimal `2 norm. Therefore, the extension
will converge to zero outside Ω as NΛ →∞, albeit slowly.

One can similarly wonder whether the exact solution obtained through
Algorithm 4 converges. The most likely limit is the function that agrees
with f on Ω and has overall minimal Hk norm. In the one-dimensional case,
with Ω = [−1, 1], the optimal extension can be found explicitly as

g̃ = min
g∈L2

R\Ω

∫
R\Ω

α0(g)2 + α1

(
dg

dx

)2
+ α2

(
d2g

dx2

)2

+ . . . dx, (5.39)

g̃(1) = f(1), g̃(−1) = f(1).

The minimiser of this functional can be found by recognizing (5.39) as an Euler-
Lagrange equation, due to the periodicity on R. The extrema of a functional∫ b
a
V(x, f, f ′, . . . )dx satisfy the differential equation

∂V
∂f
− d∂V
dx∂f ′

+ d2∂V
dx2∂f ′′

− · · · = 0,
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Figure 5.6: Illustration of the different intermediate results in Algorithm 3. xβ
represents the solution at the boundary, with added elements from the nullspace.
As before, the residual vanishes smoothly at the boundary.
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with boundary conditions obtained through interpolating f and its derivatives
at a and b. It follows that

α0g̃ − α1
d2g̃

dx2 + α2
d4g̃

dx4 − · · · = 0 (5.40)

with boundary values

g̃(1) = f(1), g̃(−1) = f(−1), g̃′(1) = f ′(1), g̃′(−1) = f ′(−1), . . .

Following (5.34) αi = 1 when minimizing the Sobolev k norm. The minimiser g̃
is thus the solution of the differential equation (5.40) with 2k degrees of freedom.
At each boundary the function value and first k− 1 derivatives are interpolated.

We illustrate, without proof, that the smoothed extension indeed converges to
g̃ as NΛ →∞, when minimizing the H2 norm. Equation (5.40) becomes

g̃ + d4g̃

dx4 = d2g̃

dx2 ,

which for T = 2 has solutions

g̃(x) = c1 cos
(x

2

)
e
√

3
2 x+c2 cos

(x
2

)
e−
√

3
2 x+c3 sin

(x
2

)
e
√

3
2 x+c4 sin

(x
2

)
e−
√

3
2 x.

The coefficients ci are found through interpolating the function values and
first derivatives at the boundary. Figure 5.7 shows the smoothed extension
of f(x) = x3 − 0.5x+ sin(10x)/10 + 2 from [−1, 1] to [−2, 2] for NΛ from 100
(yellow) to 1000 (blue). The exact minimiser g̃ is shown as the dashed line, and
the smoothed extensions are indeed seen to converge towards this function.

Remark 5.9. When α0 = · · · = αk−1 = 0 and αk = 1, the Sobolev norm
minimises the L2 norm of the k-th derivative. In this case, the solution to
(5.40) is the Hermite interpolating polynomial. This is an interesting parallel to
approaches where the extension is explicitly computed as Hermite interpolants
[101], or other polynomials [16].
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Figure 5.7: Convergence of the extension (yellow to blue for increasing NΛ)
to g̃ (dashed), when using Algorithm 4 to approximate f(x) = x3 − 0.5x +
sin(10x)/10 + 2 with minimal H2 norm.





Chapter 6

Implementation

The algorithms and applications from the previous chapters have been
implemented and made publicly available in a julia package called FrameFun
1 and its dependencies BasisFunctions and Domains. The style is influenced by
the matlab software package Chebfun2 [32] and the julia package ApproxFun3

[78], based on [77].

The idea is to represent functions internally as expansions in function sets. An
end user can then manipulate function objects without having to worry about
the specifics of function approximation and representation. Where the Chebfun
package achieves this by representing functions using (piecewise) Chebyshev
polynomials, FrameFun allows representations in frames, using the algorithms
from the previous chapters where possible.

As the development of this software is ongoing, we do not provide excessive
implementation or syntax details, since they are easily out of date. Instead we
opt to describe the design philosophy, and how julia helps to write flexible and
extendable code.

The third section previously appeared as [60].
1https://github.com/daanhb/FrameFun.jl
2http://www.chebfun.org
3https://github.com/JuliaApproximation/ApproxFun.jl
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6.1 BasisFunctions

BasisFunctions represents the concepts from Chapter 1, and aims to stay close
to the mathematical interpretation. The main objects are function sets and
their spans, and operators that map elements from one finite span to another.
The goal is to have operators that can be applied efficiently, but that are general
enough to deal with new function sets when they are introduced.

6.1.1 FunctionSets

A FunctionSet object is any set of functions with a finite size, corresponding to
a set {φi}IN from Chapter 1. Every FunctionSet can be indexed (not necessarily
from 1 to N), and returns a subset of its elements or a single element. A
FunctionSet is parametrised as FunctionSet{T} by a domain type T. This type
corresponds to the type of a domain in the Domains package, and it is the type
of the expected argument to the elements of the function set. For example,
a Fourier basis with domain type an interval [−1, 1] of BigFloats will return
a complex BigFloat eikπx when the k-th element is evaluated in a BigFloat
−1 ≤ x ≤ 1.

Examples of FunctionSets that are implemented in BasisFunctions are: Fourier
bases, sine and cosine bases, polynomial bases (Jacobi, Laguerre, Hermite,
monomials), rational polynomials, certain wavelets and splines. These can
be mapped, combined into augmented sets as in §5.1, combined into tensor
products as higher-dimensional sets, or combined piecewise based on a set of
domains.

The space spanned by linear combinations of functions in a FunctionSet F with
certain type T is a Span{T,F}. Our approximations thus contain such a span,
and corresponding expansion coefficients. When evaluating the approximation,
the input type is determined by the FunctionSet domain, the output type is
determined by the output of the individual functions and the coefficient type.

Each FunctionSet can support additional functionality: derivatives of an
expansion in terms of its coefficients, efficient evaluation on certain grids,
or expansion arithmetic. It can also provide an efficient operator to convert a
given function into coefficients. This can be the orthogonal projection onto the
span, or the interpolant in a certain sample set.

Remark 6.1. There is no inherent difference between frames and bases in
this implementation. Recall from §1.4 that a truncated linearly independent
frame is a Riesz basis for its span, so it is unclear how to define these concepts
without resorting to FunctionSets of infinite dimension. Even deciding whether
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a FunctionSet is an orthogonal basis for its span is difficult: imagine adding the
cosine basis and sine basis. There is no way to generically know this FunctionSet
is an orthogonal basis for the union of the spans without checking orthogonality
for each pair of elements.

6.1.2 Operators

Expansions in Spans of FunctionSets are manipulated through operators on the
coefficients. An operator maps the elements of one Span to another Span, and
the implementation of the operator may depend on the type of the coefficients.
As these operators are often used multiple times throughout computations, we
have the following guidelines when implementing operators:

• An operator should be executable as efficiently as possible.

• An operator should not allocate memory when it is applied, only when it
is constructed.

An operator can either be applied in place, or memory allocated for the result
can be passed as an optional argument. Operators can be transposed, scaled,
added and composed, provided the corresponding Spans match. Note that this
provides an inherent error check, as composing operators is only allowed if it
makes sense mathematically, i.e. if their domains and ranges agree. Operators
may also implement (pseudo)-inversion.

We illustrate our guidelines through the calculation of the operator (AA∗− I)A
from Algorithm 3. The domain of the operator are the Fourier coefficients, the
range is in this case the Span of a discrete grid, where the (complex) coefficients
represent function samples in the grid points. With F the FFT of length NR,
EΛ an extension operator from PΛ to PR̂ points and RΩ a restriction operator
from PR to PΩ, we have

A = RΩFEΛ.

This composite operator allocates a vector of length NR for the intermediate
result between EΛ and F . The adjoint A∗ is computed automatically, and
similarly allocates a vector of length NR. The FFTs use the FFTW library
[40], that allows pre-allocation as well. The compositions AA∗, AA∗ − I and
(AA∗ − I)A then each pre-allocate a vector of length NΛ or NΩ for their
intermediate results. The application of (AA∗ − I)A to r columns of a random
matrix W in Algorithm 3 is therefore allocation free.

A special type of operators are diagonal operators. Since diagonality is preserved
under linear combinations, composition, and pseudo-inversion, a combination
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of operators is diagonal if the individual operators are diagonal. This allows
us to easily combine operators such as c2AδΩ,2p2(D)(p1(D))−1 in (5.30), where
p2(D)(p1(D))−1 will resolve to a single diagonal operator automatically.

Through the power of multiple dispatch and parametrisation, this framework
can be coded very efficiently. For example, there is a generic evaluation operator
that evaluates any FunctionSet on any grid by evaluating at every grid point.
However, when the FunctionSet is a Fourier basis and the grid is equispaced,
the same evaluation operator method specialises to use the FFT. As another
example, operators only need to implement a method to apply it to a vector of
the correct size; all details regarding memory allocation and comparing spans
are handled at the generic operator level.

6.2 FrameFun

In FrameFun the algorithms from Chapters 3 and 4 are implemented. They
are represented as an operator that maps samples on some discrete grid to
coefficients in the span of some FunctionSet. When the FunctionSet is a FE
frame with bounding box R and domain Ω, the subgrid will be PΩ = PR ∩ Ω.
As we will see in the next section, only a representation of the characteristic
function of Ω is needed to obtain PΩ.

When using Algorithm 3, the algorithm operator stores the SVD of the low
rank matrix Ã when it is constructed. Every following application then only
goes through the algorithm steps following this SVD. This way, computing a
second approximation with the same parameters is significantly more efficient
than the first one (see Remark 3.4).

6.3 Domains

In this section we detail how domains are represented internally in Domains
through the use of characteristic functions. Since our methods only require
a point set PΩ, we have no need for elaborate domain descriptions such as
triangularisations or parametrisations. The characteristic function is a natural
description for many domains, and allows us to do efficient domain arithmetic
as well.
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6.3.1 The characteristic function

The characteristic function χ, or indicator function, of a domain Ω ⊂ Rn is a
function on Rn that has value 1 for points that belong to Ω and the value 0 for
points that do not, i.e.,

χ(x) :=
{

1, x ∈ Ω,
0, x /∈ Ω. (6.1)

It is convenient in implementations to associate boolean values with χ(x), so
that it evaluates to true or false, rather than the numeric values 1 and 0.

Representing a domain by its characteristic function has a number of
consequences. Two advantages are:

• The function is unique and well-defined for any domain, be it open or
closed, connected or disconnected, punctured, empty, a discrete set, finite
or infinite, a fractal, . . .

• As we will see later on, the characteristic function is often easy to
implement. For example, with x = [x1,x2] in two dimensions, the
halfopen domain bounded by the parabola x2 = x2

1 and the straight line
x2 = x1 has characteristic function

χ(x) = (x2 > x
2
1) & (x2 ≤ x1). (6.2)

There is no need even to find the intersection points of both curves, as far
as implementing the characteristic function is concerned.

Consequently, it is easy and very cheap to find the characteristic function of the
domain that is bounded by, say, the level curves of a given function, even if the
resulting domain is disconnected and contains many holes. This operation does
not even require any numerical computation, as will be demonstrated later on.

Two disadvantages are:

• The characteristic function does not explicitly convey information about
the boundary of the domain. This would be difficult for fractal domains,
but it would be convenient to have for simpler domains, and essential
to have for boundary value problems. An exception are the domains in
§6.5.4.

• The least squares approximation scheme requires point evaluations inside
the domain. Though the characteristic function is well-defined for domains
that have no volume in Rn, such as a line in R2 or a surface in R3, the
concept is not suited for approximating functions on such domains.
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6.3.2 Generating points

The least squares approximation scheme requires NΩ point evaluations of the
given function f inside the domain Ω. Thus, one needs a way to find NΩ points
that belong to Ω.

It is convenient at this stage too to have at hand a bounding box R, or the
knowledge of any other region R that is easily sampled for which Ω ⊂ R. Then,
points inside Ω can be generated by sampling NR points yj of R and checking
whether χΩ(yj) is true. This results in a set of N points with N ≤ NR:

{xj}Nj=1 := {yj |χΩ(yj) = 1, j = 1, . . . , NR}

Only those points are retained and the procedure is repeated with denser
samplings, corresponding to increasing values of NR, until N ≥ NΩ.

Figure 6.1: The characteristic function (6.2) evaluated in NR points inside the
bounding box R. The points are a subset of a structured equispaced grid on R.

For domains with non-zero volume in Rn, it is guaranteed that NΩ points will
eventually be found if the sampling of R becomes uniformly denser. Though
in principle any randomly chosen set of points {xj} is sufficient, for efficiency
reasons it is better to choose a structured set. In particular, in combination with
the FE scheme we use a bounding box R and an equidistant grid on R. The
main advantage is that Fourier series approximations can be evaluated efficiently
on that grid with the FFT. In several examples further on, the characteristic
function of a domain itself is defined in terms of a Fourier series, and in that
case the characteristic function too can be evaluated efficiently on a structured
grid using the FFT.

From the point of view of the approximation problem, it may be better to have
more points clustered towards the boundary of the domain. However, even for
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multivariate polynomial interpolation it is a very difficult problem to determine
the best points on a general domain. Furthermore, since we make very few
assumptions regarding our knowledge of the boundary, choosing more points
near the boundary requires algorithmic work. Instead, we oversample.

6.3.3 Implementation

The elements that make up a domain include:

• a bounding box,

• a routine to evaluate the characteristic function at a single point x,

• an optimised routine to evaluate the characteristic function on a regular
grid of the bounding box.

The latter routine will be called the grid evaluation routine. It is not an
essential part of the implementation, but it leads to much increased efficiency
in particular when using the FE approximation scheme. The goal is not merely
to exploit the speed gained from vectorisation, but to lower the computational
complexity compared to calling the single evaluation routines many times.

For points on the boundary, the characteristic function can be true or false,
corresponding to closed and open domains. This makes a difference in practice
only in special circumstances, since in general the points that are sampled are
unlikely to coincide with the boundary of the domain. In general, it is very
difficult to distinguish between open and closed domains with the proposed
techniques.

6.4 Computing with domains

6.4.1 Set operations

Basic set operations have rather obvious ramifications for the characteristic
function. The union, difference and intersection of two domains give rise to
logical relationships between the characteristic functions involved. Assume the
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domains Ωi, i = 1, 2, 3, have characteristic functions χi. Then we have

Ω3 = Ω1 ∪ Ω2 ⇒ χ3(x) = χ1(x) or χ2(x)

Ω3 = Ω1 ∩ Ω2 ⇒ χ3(x) = χ1(x) and χ2(x)

Ω3 = Ω1 \ Ω2 ⇒ χ3(x) = χ1(x) and not χ2(x)

Ω3 = (Ω1 ∪ Ω2) \ (Ω1 ∩ Ω2)⇒ χ3(x) = χ1(x) xor χ2(x).

These operations are easily implemented by definining χ3 in terms of the supplied
definitions of χ1 and χ2. Similarly, the grid evaluation routine of Ω3 can be
defined in terms of the grid evaluation routines in Ω1 and Ω2. This makes sure
that a potentially fast implementation of this procedure for Ω1 and Ω2 leads to
a fast implementation of this procedure also for Ω3.

In Julia, this enables the following operations

» Ω3 = Ω1 & Ω2

» Ω3 = Ω1 | Ω2

» Ω3 = Ω1 \ Ω2

» Ω3 = xor(Ω1,Ω2)

by overloading the logical operators for domain objects.

6.4.2 Arithmetic operations

Domains can be translated and scaled by adding a vector and by multiplying
by a scalar respectively. We have

∀c ∈ Rn : Ω2 = Ω1 + c⇒ χ2(x) = χ1(x− c)

∀a ∈ R : Ω2 = a ∗ Ω1 ⇒ χ2(x) = χ1(x/a).

It should be noted that while translation of a domain is independent of the
location of the origin, scaling a domain like above does depend on the location
of the origin. A circle centered around the origin would simply increase in size
by a factor of a, but a circle centered at the point [1; 0] would also move a factor
a to the right.

Arithmetic operations are also easily implemented, by definining χ2 in terms of
the supplied definition of χ1 and similarly for the grid evaluation routines.
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In Julia we may write

» Ω2 = Ω1 + [1;0]

» Ω3 = 2*Ω1

Combined with the above, a moon-shaped domain can be defined in terms of a
circle C with radius 1 by the statement

» moon = C \ (C + [1/2; 0])

Similarly, if C is centered around the origin, a domain with a hole is obtained
by

» annulus = 2*C \ C

6.4.3 Implicitly defined or derived domains

Finding the level curves of a function, say the set of points where f(x) = 3,
requires algorithmic work and can become arbitrarily complicated depending
on the complexity of the given function f . However, it is very easy to define
the characteristic function of a domain that is bounded by this level curve.
Say a function f is defined on Ω and the domain C is the open domain where
f(x) > 3. Then the characteristic function χC of C is given explicitly by

χC(x) =
{
f(x) > 3, ∀x ∈ Ω,

0, otherwise.

The implementation of the characteristic function is defined in terms of the
inequality f(x) > 3, which is a boolean expression for each x. The grid
evaluation routine of C may be implemented in terms of the grid evaluation
routine of f . Thus, if f can be evaluated efficiently via FFT for example, then
the same holds for the characteristic function of the domain C.

In Julia, we may now write

» C = f > 3

» C = f > g

» C = cos(f .ˆ 2) - 3 < sqrt(pi)

where both f and g are existing functions. In the second statement, the domain
C is in addition restricted to the intersection of the domains of f and g, such
that it makes sense to compare f and g.
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Interestingly, from the point of view of implementation, it is irrelevant whether
or not the resulting domains are connected or not. The shape of the resulting
domain can be truly arbitrary and does not effect the computational cost of
this new characteristic function. Of course, the geometry of the domain does
play a role in the approximation problem to be solved, see Chapter 4.

6.4.4 Deciding on the equivalence of domains

When given two characteristic functions χ1 and χ2, the problem of deciding
whether they represent the same domain is a difficult one and requires careful
consideration. It is of course not possible to check for each and every point
x ∈ R2 whether χ1(x) equals χ2(x). Two possible ways to treat this problem
are as follows.

1) Verify equivalence up to a certain resolution The characteristic functions
χ1 and χ2 are sampled on an equidistant grid with a certain specified resolution
and covering both domains. Their equivalence at this resolution level is
determined by their equivalence at the grid points.

2) Compare domain identifiers In julia it is easy to overload the equality
operator by having it compare attributes of the domain type, for example the
radius and center of two circles need to agree for them to be the same.

The first approach is costly and does not always give the right mathematical
answer, in the sense that it may conclude equivalence for two domains that
are not equivalent. It will never conclude inequivalence for equivalent domains.
However, the approach applies to all domains and will always converge to the
correct answer when increasing the resolution level.

The second approach is fast, but does not always give the right mathematical
answer, as two domains may be constructed in similar ways but independently
of each other. types will be different, though the domains may be the same.
For example, the union of two rectangles may or may not be another rectangle.
Avoiding this situation requires care from the user of the software.



EXAMPLES 133

6.5 Examples

6.5.1 Characteristic function

For some domains the characteristic function is simply the most convenient
description. The Mandelbrot set is an example, defined by

χ(x) =
(

lim sup
n→∞

|zn+1| ≤ 2
)
,

zn+1 = z2
n + x1 + ix2, z0 = 0.

An approximation of

fm(x) = cos(20x1 + ix2)− 5x1x2 (6.3)

is shown in Fig. 6.2a. It was obtained using an equispaced grid on [−2, 2] ×
[−1.5, 1.5]. Using the Fourier Extension technique, convergence up to a tolerance
of 10−12 was achieved for 32× 32 basis functions (Fig. 6.2b).

6.5.2 Domain arithmetic

As an example of computing with domains, Fig. 6.3 shows an approximation on
a ring, obtained by the Julia commands

» Ω3 = disk(0.9) \ disk(0.5)

Of special note here is that the target function

fr(x) = x1
x2

1 + x2
2

(6.4)

has a singularity at (0, 0), enclosed in the domain. However, this has little
influence on the approximation, as the exterior of the domain is never sampled.
As Fig. 6.3b shows the approximation converges up to a tolerance of 10−10 for
32× 32 basis functions.
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(a) Approximation (b) Error

Figure 6.2: An approximation of fm ((6.3)) on the Mandelbrot set. The right
figure shows log10(|fm − PτNΩ,NΛ

fm|). The approximation error is very small
precisely on the Mandelbrot set. In the extension region, the functions fm and
PτNΩ,NΛ

fm are both defined and they can be evaluated and compared, but they
bear no resemblance. In particular, PτNΩ,NΛ

fm is periodic on the box, while fm
is not.

(a) Approximation (b) Error

Figure 6.3: An approximation of fr ((6.4)) on a ring-shaped domain. The right
figure shows log10(|ff − PτNΩ,NΛ

fr|).
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(a) f1 (b) f2

(c) f2 > f1 (d) f = max(f1, f2)

Figure 6.4: A piecewise approximation of F ((6.5)), and the implicit domain
f2 > f1.

6.5.3 Implicitly defined domains

More convoluted domains occur when trying to approximate a function such as

f1(x) = sin(5x1 − 3x2) sin(7x1)

f2(x) = −0.5x1 + 0.2

f(x) = max(f1(x), f2(x)) (6.5)

on a disk. Given approximations f̃1 and f̃2 of f1 and f2 on the full disk
(Figs. 6.4a to 6.4b), f̃ is simply

f̃(x) =
{
f̃1(x), f̃1(x) ≥ f̃2(x)
f̃2(x), f̃1(x) < f̃2(x)

.

In this case, evaluating f̃ (Fig. 6.4d) or the characteristic function (Fig. 6.4c) is
straightforward, and fast on an equispaced grid, since only one full evaluation
of f̃1 and f̃2 is required.
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6.5.4 Polar coordinates

For some two-dimensional domains, such as the starlike shape from §5.1.4, the
natural characteristic function is

χ(x) =
√
x2

1 + x2
2 < φ(θ), θ = atan2(x2,x1).

If φ(θ) is a 2π periodic function, this defines a smooth domain. Moreover, the
normal direction on a boundary point of this domain is given by

nx = (φ′(θ) sin(θ) + φ(θ) cos(θ),−φ′(θ) cos(θ) + φ(θ) sin(θ)) .

To obtain the required derivative φ′, we can approximate φ by a Fourier series
on [−π, π], and apply a (diagonal) derivative operator to the coefficients to
obtain an approximation for φ′. The Neumann boundary conditions for the
examples in §5.1.4 and §7.5 were obtained in this fashion.



Chapter 7

Contributions and Future
work

In this final chapter we compile a list of concrete realisations made in this thesis,
along with some associated open problems. We then leave the reader with a
few ideas for future work, and some remarks on work in progress.

7.1 Contributions

• We have explored the connection between Fourier frame approximations
and Prolate Spheroidal Wave functions in Chapter 2. Though this
connection was known, it had not yet been used in algorithm design. To the
best of our knowledge the observation that the P-DPSS are eigenvectors
of the discrete FE collocation matrix is new.

• We used a known property of Prolate Spheroidal Wave functions and their
generalisations, to come up with Algorithm 2. Applicable only to one-
dimensional Fourier extensions, this was nonetheless an improvement over
existing fast algorithms, as it added flexibility in choosing the extension
length.

• We developed Algorithm 3, that depends only on a particular singular
value distribution in the collocation matrix. In Chapter 3 we showed the
utility of this approach in one dimension. Then in Chapter 4 we showed
that the two-dimensional FE problem has this singular value profile as

137
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well. The one-dimensional approach has been used in [109] to compute
fast convolutions of functions with compact support.

• In Chapter 5, Algorithm 3 was used as the foundation for more involved
problems, such as approximation in augmented frames, solving boundary
value problems, and smoothing the solution.

• In Chapter 6 we showed characteristic functions can represent domains
to the degree needed by the algorithms. This minimal representation is
highly flexible.

• We implemented this in an open-source Julia package, that allows
straightforward experimentation with our algorithms. This is currently
being developed and used by the researchers on frame approximations at
KU Leuven.

These contributions have been published, or are in preparation for publishing,
as

• Matthysen, R., and Huybrechs, D. Fast Algorithms for the
computation of Fourier Extensions of arbitrary length. SIAM J. Sci.
Comput. 38, 2 (2015), A899–A922

• Huybrechs, D., and Matthysen, R. Computing with Functions on
Domains with Arbitrary Shapes. Springer International Publishing, Cham,
2017, pp. 105–117

• Matthysen, R., and Huybrechs, D. Function approximation on
arbitrary domains using Fourier Extension frames. SIAM J. Numer. Anal.
(accepted) (2018)

• Matthysen, R., and Huybrechs, D. Fast algorithms for augmented
Fourier extensions. (in preparation) (2018)

However some open problems remain:

• The bound for two dimensional plunge regions in Theorem 4.17
overestimates the constant, judging by Fig. 4.12. In particular, we
conjecture that τ−1 is replaceable by log τ−1. However, Lemma 4.16
always leads to a factor τ−1, that is also present in [106, 67]. Improving
the constant will likely require a new proof technique such as that used
recently in [111], using more than just the trace iterates.
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• A deeper analysis of the weighted least squares formulation for boundary
value problems is required, particularly with respect to the weights and
density requirements for the sample sets in the domain and on the
boundary.

• The error analysis for the algorithm in §3.6 should be extended to include
perturbations of singular vectors as well.

• The two dimensional Fourier Extensions converge in the discrete `2 norm
over PΩ. However, little is known for convergence in the L2

Ω-norm or
L∞Ω -norm. Judging from Fig. 4.13, the answer will be related to the
domain geometry, at least for the latter norm.

7.2 Future work

This section outlines possible extensions of the ideas in this thesis that are
currently under investigation. Some of them (§§7.3 and 7.4) are work in progress,
as a joint effort by the researchers working on frame approximations at KU
Leuven (Daan Huybrechs, Marcus Webb and Vincent Coppé).

7.3 Adaptivity

In the first chapter, we mentioned a desirable property of approximations in
orthonormal bases: decay of the expansion coefficients. Knowing the decay rate
allows for error estimations based on the last coefficients

‖f − PNf‖2 =
∑
i/∈IN
|ci|2,

see §1.2. This way the expansion can be truncated when the coefficients have
decayed to machine precision, leading to an optimal number of degrees of
freedom in the representation, as in Chebfun [32].

A downside of the FE frame is the absence of such decay for the coefficients.
Figure 7.1 compares approximations for the test function f(x) = ex on [−1, 1]
using both a Chebyshev basis on [−1, 1] and a FE frame on [−2, 2]. While the
convergence behavior in Fig. 7.1a is comparable, that of the coefficients is not:
the Chebyshev coefficients clearly reach machine precision before N = 40. The
FE coefficients on the other hand show no clear decay pattern.

This makes FE approximations difficult to truncate, as there are no negligible
coefficients. An optimal-length FE can still be obtained using adaptive
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Figure 7.1: Approximation error as a function of N and coefficient size for 100
and 200 degrees of freedom, for Chebyshev and Fourier Frame approximations.
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algorithms that can increase N until a certain error tolerance is met. Such a
procedure would require both an incremental algorithm and efficient, robust
error estimation. These are both current areas of research.

7.4 Polynomial spectrum mapping

Some frames give rise to collocation matrix spectra that have a plunge region,
but no clustering, or more than one cluster. An example is the truncated frame
on [−1, 1]

Φ2NΛ =
{

1√
2

eiπnx
}
IN

∪ {Tj(x)}j=1,...,NΛ
. (7.1)

combining Fourier and Chebyshev basisfunctions. When collocated on an
equispaced grid, the collocation matrix has a spectrum where about a quarter
of the singular values are above 1. The singular values do not cluster near
1, but they are bounded from above by the collocation matrix norm, in this
case ‖A‖2 = 4. As upcoming work [103] shows, there is a plunge region
η(τ,NΛ, a) = O(logNΛ) for this matrix, where

η(τ,NΛ, a) = min(k − j) s.t. σj ≥ a− τ, τ > σk. (7.2)

and a = 1. Unfortunately, it is not immediately clear how to isolate this plunge
region. The mapping A(A∗A − I) used in Algorithm 3 will not result in a
low rank system. However, there exist functions p(AA∗), so that the mapping
W(σ) = p(σ2)σ results in a low rank system. Specifically, with a as in (7.2) and
b = ‖A‖2, p(σ2)σ should be small for σ ∈ [a, b] and σ ∼ 0. If p is a polynomial,
it can be evaluated for AA∗ in O(kNΛ logNΛ) operations, with k the order of
the polynomial. A possible choice of p is the Chebyshev polynomial on [a2, b2],
scaled so that Tk(0) = 1

P (AA∗) = Tk((b2 + a2 − 2AA∗)/(b2 − a2))
Tk((b2 + a2)/(b2 − a2)) . (7.3)

This polynomial has a maximum value of ε on [a, b] if

ε ≤ Tk((b2 + a2)/(b2 − a2)),

which happens for polynomial degree approximately

k &
log ε/2

log((b− a)/(b+ a)) + 1. (7.4)

This way the matrix P (AA∗)A is of low numerical rank, as all singular values
in [0, ε] ∪ [a − ε, b] are mapped to ε or below, see Fig. 7.2 for an illustration
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of the mapped spectrum. As before, when subtracting the image under A of
the solution, the right hand side has only contributions remaining that are
in span({Uk}), σk ∈ [a, b]. This means that an iterative solver like LSQR will
converge a lot quicker, with error estimate

‖Axm − b‖ =
(
b− a
b+ a

)m
‖Ax0 − b‖,

as opposed to (3.1). We also note that the Chebyshev iteration method could
be used here as well, which is an iterative method that relies on building a
polynomial such as (7.3) [45]. This method requires an estimate of the spectrum
bounds a and b over other iterative algorithms, but these are necessary for
(7.3) as well and are usually known from the frame definition. This leads to a
modified Algorithm 3, shown as Algorithm 5. Assuming the iterative method
converges quickly, the cost is dominated by forming the matrix Tk(AA∗)AW
in the second step, with an O(kNΛ log2NΛ) cost for a logarithmically growing
plunge region.

Algorithm 5 Use of the polynomial spectrum mapping.
W = rand(NΛ, r + 20) . O(NΛr)
Ã = Tk(AA∗)AW . O(krNΛ logNΛ)
USV ∗ = Ã . O(NΛr

2)
y = V (S†τ (U∗(Tk(AA∗)b))) . O(NΛr + kNΛ logNΛ)
xβ = Wy . O(NΛr)
Axα = (b−Axβ) (Iterative method) . O(NΛ logNΛ)
x = xα + xβ . O(NΛ)

Note that this algorithm yields exactly the projection algorithm when used for
Fourier Extensions or similar frames that have a single singular value cluster.
However, a disadvantage is that the degree k from (7.4) is rather high. To
map [1, 4] to machine precision, a polynomial of degree about 70 is needed.
This obviously increases the cost considerably. Though numerical experiments
indicate this is a feasible approach, additional efforts are needed to analyse
the error, the influence of the iterative solvers, and to attempt to lower the
considerable extra factor added to the algorithm cost.

7.5 Integration with time-stepping methods

Another possible future application is using the boundary value problem solver
from §5.1.4 as a spectral method in space, and combining it with a finite order
method in time. Recall that for the Fourier coefficients, a differential operator
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Figure 7.2: The spectrum of the collocation matrix A for the frame (7.1), along
with the spectrum of T70(AA∗)A. Note that the spectrum of A is different from
that in Fig. 2.2, the singular values do not cluster near 1.

with constant coefficients L̂s = ps(D) is diagonal. When looking at a partial
differential equation of the form

∂u

∂t
= L1u, (7.5)

linear systems involving the operator L̂1 on the coefficients arise when
discretising the partial differential equation in time using an implicit method.
Let u(t, x) be the solution to (7.5), and let ûj denote the Fourier coefficients of
uj(x) at a specific time tj . Discretizing (7.5) using the trapezoidal rule with
timestep ∆t yields

un+1 = un + ∆t/2(L1un+1 + L1un)

(I − ∆t
2 L1)un+1 = (I + ∆t

2 L1)un.

Boundary conditions are incorporated using the weighted least squares approach,
as in §5.1.4. Noting the similarity to (5.29), the conditions in the coefficient
space

AΩ(I − ∆t
2 L̂)ûn+1 = AΩ(I + ∆t

2 L̂)ûn, (7.6)

cjAδΩj L̂j ûn+1 = hj , j = 2, . . . , k (7.7)

constitute a boundary value problem such as those in §5.1.4. Solving these
weighted least squares formulations was done through Algorithm 3, calculating
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an approximate pseudo-inverse of the system
AΩ

c2AδΩ,2p2(D)(I − ∆t
2 L̂)−1

...
ckAδΩkpk(D)(I − ∆t

2 L̂)−1


(

(I − ∆t
2 L̂)ûn+1

)
=


AΩ(I + ∆t

2 L̂)ûn
h2,n+1

...
hk,n+1

 .

Note that this pseudo-inverse can be applied in O(Nη(τ,NΛ)) time, compared
to the O(Nη(τ,NΛ)2) calculation cost (see Remark 3.4). This makes a single
time-step considerably more efficient than the pre-computation step, which is
approximately the cost of an approximation problem.

There are questions remaining regarding the stability of this method.
Preliminary results show the possibility of eigensolutions to (7.6) and (7.7)
for which un+1 = λun, λ > 1, where this behaviour is unphysical. However,
this only occurs for some combination of differential operators Lk, least squares
weights ck and time step ∆t. Further, the λ’s did not exceed 1 +

√
τ . For

τ = εmach, it then takes log1+√εmach
(2) ∼ 108 steps for the initial vector to

double in magnitude. The interplay between the different parameters causing
this behaviour is a topic of current research.

As an example of a partial differential equation that can easily be solved through
this method, we solve the two-dimensional wave equation

∂2u

∂t2
= ∂2u

∂x2 + ∂2u

∂y2 (7.8)

on a star-shaped domain, with homogenous Neumann boundary conditions.
The inital condition is the Gaussian

f(x, y) = 1
2e−20(x2+y2).

L̂1, as before, is an elementwise operator that is easily inverted. To discretise
the second order derivative in time we introduce the extra variable

v = ∂u

∂t
.

Using again the trapezoidal rule for what is now a system of differential equations
yields

un+1 = un + ∆t
2 (vn+1 + vn)

vn+1 = vn + ∆t
2 (Lun+1 + Lun),
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from which vn+1 can be eliminated, resulting in

un+1 = un + ∆t
2

(
2vn + ∆t

2 (L1un+1 + Lun)
)
.

Proceeding as before for un+1 and updating vn+1 accordingly leads to the results
shown in Fig. 7.3. The parameters for this simulation were τ = 10−14, NΛ = 312

and % = 2, ∆t = 0.005 and cj = 1.



146 CONTRIBUTIONS AND FUTURE WORK

(a) k = 0 (b) k = 40

(c) k = 80 (d) k = 120

(e) k = 160 (f) k = 180

Figure 7.3: The solution uk(x, y) to the wave equation (7.8), after k timesteps.
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